Why Not Twitter?

Tweety birds
Character limitations mean Twitter messages have room to carry essentially no information. Shutterstock Image

20 June 2018 – I recently received a question: “Do you use Twitter?” The sender was responding positively to a post on this blog. My response was a terse: “I do not use Twitter.”

That question deserved a more extensive response. Well, maybe not “deserved,” since this post has already exceeded the maximum 280 characters allowed in a Twitter message. In fact, not counting the headline, dateline or image caption, it’s already 431 characters long!

That gives you an idea how much information you can cram into 280 characters. Essentially none. That’s why Twitter messages make their composers sound like airheads.

The average word in the English language is six characters long, not counting the spaces. So, to say one word, you need (on average) seven characters. If you’re limited to 280 characters, that means you’re limited to 280/7 = 40 words. A typical posting on this blog is roughly 1,300 words (this posting, by the way, is much shorter). A typical page in a paperback novel contains about 300 words. The first time I agreed to write a book for print, the publisher warned me that the manuscript needed to be at least 80,000 words to be publishable.

When I first started writing for business-to-business magazines, a typical article was around 2,500 words. We figured that was about right if you wanted to teach anybody anything useful. Not long afterward, when I’d (surprisingly quickly) climbed the journalist ranks to Chief Editor, I expressed the goal for any article written in our magazine (the now defunct Test & Measurement World) in the following way:

“Imagine an engineer facing a problem in the morning and not knowing what to do. If, during lunch, that engineer reads an article in our magazine and goes back to work knowing how to solve the problem, then we’ve done our job.”

That takes about 2,500 words. Since then, pressure from advertisers pushed us to writing shorter articles in the 1,250 word range. Of course, all advertisers really want any article to say is, “BUY OUR STUFF!”

That is NOT what business-to-business readers want articles to say. They want articles that tell them how to solve their problems. You can see who publishers listened to.

Blog postings are, essentially, stand-alone editorials.

From about day one as Chief Editor, I had to write editorials. I’d learned about editorial writing way back in Mrs. Langley’s eighth grade English class. I doubt Mrs. Langley ever knew how much I learned in her class, but it was a lot. Including how to write an editorial.

A successful editorial starts out introducing some problem, then explains little things like why it’s important and what it means to people like the reader, then tells the reader what to do about it. That last bit is what’s called the “Call to Action,” and it’s the most important part, and what everything else is there to motivate.

If your “problem” is easy to explain, you can often get away with an editorial 500 words long. Problems that are more complex or harder to explain take more words. Editorials can often reach 1,500 words.

If it can’t be done in 1,500 words, find a different problem to write your editorial about.

Now, magazine designers generally provide room for 500-1,000 word editorials, and editors generally work hard to stay within that constraint. Novice editors quickly learn that it takes a lot more work to write short than to write long.

Generally, writers start by dumping vast quantities of words into their manuscripts just to get the ideas out there, recorded in all their long-winded glory. Then, they go over that first draft, carefully searching for the most concise way to say what they want to say that still makes sense. Then, they go back and throw out all the ideas that really didn’t add anything to their editorial in the first place. By then, they’ve slashed the word count to close to what it needs to be.

After about five passes through the manuscript, the writer runs out of ways to improve the text, and hands it off to a production editor, who worries about things like grammar and spelling, as well as cramming it into the magazine space available. Then the managing editor does basically the same thing. Then the Chief Editor gets involved, saying “Omygawd, what is this writer trying to tell me?”

Finally, after about at least two rounds through this cycle, the article ends up doing its job (telling the readers something worth knowing) in the space available, or it gets “killed.”

“Killed” varies from just a mild “We’ll maybe run it sometime in the future,” to the ultimate “Stake Through The Heart,” which means it’ll never be seen in print.

That’s the process any piece of professional writing goes through. It takes days or weeks to complete, and it guarantees compact, dense, information-packed reading material. And, the shorter the piece, the more work it takes to pack the information in.

Think of cramming ten pounds of bovine fecal material into a five pound bag!

Is that how much work goes into the average Twitter feed?

I don’t think so! The twitter feeds I’ve seen sound like something written on a bathroom wall. They look like they were dashed off as fast as two fingers can type them, and they make their authors sound like illiterates.

THAT’s why I don’t use Twitter.

This blog posting, by the way, is a total of 5,415 characters long.

What If They Gave a War, But Nobody Noticed

World War III is being fought in cyberspace right now, but most of us seem to be missing it! Oliver Denker/Shutterstock

13 June 2018 – Ever wonder why Kim Jong Un is so willing to talk about giving up his nuclear arsenal? Sort-of-President Donald Trump (POTUS) seems to think it’s because economic sanctions are driving North Korea (officially the Democratic People’s Republic of Korea, or DPRK) to the finacial brink.

That may be true, but it is far from the whole story. As usual, the reality star POTUS is stuck decades behind the times. The real World War III won’t have anything to do with nukes, and it’s started already.

The threat of global warfare using thermonuclear weapons was panic inducing to my father back in the 1950s and 1960s. Strangely, however, my superbrained mother didn’t seem very worried at the time.

By the 1980s, we were beginning to realize what my mother seemed to know instinctively — that global thermonuclear war just wasn’t going to happen. That kind of war leaves such an ungodly mess that no even-marginally-sane person would want to win one. The winners would be worse off than the losers!

The losers would join the gratefully dead, while the winners would have to live in the mess!

That’s why we don’t lose sleep at night knowing that the U.S., Russia, China, India, Pakistan, and, in fact, most countries in the first and second worlds, have access to thermonuclear weapons. We just worry about third-world toilets (to quote Danny DeVito’s character in The Jewel of the Nile) run by paranoid homicidal maniacs getting their hands on the things. Those guys are the only ones crazy enough to ever actually use them!

We only worried about North Korea developing nukes when Kim Jong Un was acting like a total whacko. Since he stopped his nuclear development program (because his nuclear lab accidentally collapsed under a mountain of rubble), it’s begun looking like he was no more insane than the leaders of Leonard Wibberley’s fictional nation-state, the Duchy of Grand Fewick.

In Wibberley’s 1956 novel The Mouse That Roared, the Duchy’s leaders all breathed a sigh of relief when their captured doomsday weapon, the Q-Bomb, proved to be a dud.

Yes, there is a hilarious movie to be made documenting the North Korean nuclear and missile programs.

Okay, so we’ve disposed of the idea that World War III will be a nuclear holocaust. Does that mean, as so many starry-eyed astrophysicists imagined in the late 1940s, the end of war?

Fat f-ing chance!

The winnable war in the Twenty-First Century is one fought in cyberspace. In fact, it’s going on right now. And, you’re missing it.

Cybersecurity and IT expert Theresa Payton, CEO of Fortalice Solutions, asserts that suspected North Korean hackers have been conducting offensive cyber operations on financial institutions amid discussions between Washington and Pyongyang on a possible nuclear summit between President Trump and Kim Jong Un.

“The U.S. has been able to observe North Korean-linked hackers targeting financial institutions in order to steal money,” she says. “This isn’t North Korea’s first time meddling in serious hacking schemes. This time, it’s likely because the international economic sanctions have hurt them in their wallets and they are desperate and strapped for cash.”

There is a long laundry list of cyberattacks that have been perpetrated against U.S. and European interests, including infrastructure, corporations and individuals.

“One of N. Korea’s best assets … is to flex it’s muscle using it’s elite trained cyber operations,” Payton asserts. “Their cyber weapons can be used to fund their government by stealing money, to torch organizations and governments that offend them (look at Sony hacking), to disrupt our daily lives through targeting critical infrastructure, and more. The Cyber Operations of N. Korea is a powerful tool for the DPRK to show their displeasure at anything and it’s the best bargaining chip that Kim Jong Un has.”

Clearly, DPRK is not the only bad state actor out there. Russia has long been in the news using various cyberwar tactics against the U.S., Europe and others. China has also been blamed for cyberattacks. In fact, cyberwarfare is a cheap, readily available alternative to messy and expensive nuclear weapons for anyone with Internet access (meaning, just about everybody) and wishing to do anybody harm, including us.

“You can take away their Nukes,” Payton points out, “but you will have a hard time dismantling their ability to attack critical infrastructure, businesses and even civilians through cyber operations.”

Programming Notes: I’ve been getting a number of comments on this blog each day, and it looks like we need to set some ground rules. At least, I need to be explicit about things I will accept and things I won’t:

  • First off, remember that this isn’t a social media site. When you make a comment, it doesn’t just spill out into the blog site. Comments are sequestered until I go in and approve or reject them. So far, the number of comments is low enough that I can go through and read each one, but I don’t do it every day. If I did, I’d never get any new posts written! Please be patient.
  • Do not embed URLs to other websites in comments. I’ll strip them out even if I approve your comment otherwise. The reason is that I don’t have time to vet every URL, and I stick to journalistic standards, which means I don’t allow anything in the blog that I can’t verify. There are no exceptions.
  • This is an English language site ONLY. Comments in other languages are immediately deleted. (For why, see above.)
  • Use Standard English written in clear, concise prose. If I have trouble understanding what you’re trying to say, I won’t give your comment any space. If you can’t write a cogent English sentence, take an ESL writing course!

The Case for Free College

College vs. Income
While the need for skilled workers to maintain our technology edge has grown, the cost of training those workers has grown astronomically.

6 June 2018 – We, as a nation, need to extend the present system that provides free, universal education up through high school to cover college to the baccalaureate level.

DISCLOSURE: Teaching is my family business. My father was a teacher. My mother was a teacher. My sister’s first career was as a teacher. My brother in law was a teacher. My wife is a teacher. My son is a teacher. My daughter in law is a teacher. Most of my aunts and uncles and cousins are or were teachers. I’ve spent a lot of years teaching at the college level, myself. Some would say that I have a conflict of interest when covering developments in the education field. Others might argue that I know whereof I speak.

Since WW II, there has been a growing realization that the best careers go to those with at least a bachelor’s degree in whatever field they choose. Yet, at the same time, society has (perhaps inadvertently, although I’m not naive enough to eschew thinking there’s a lot of blame to go around) erected a monumental barrier to anyone wanting to get an education. Since the mid-1970s, the cost of higher education has vastly outstripped the ability of most people to pay for it.

In 1975, the price of attendance in college was about one fifth of the median family income (see graph above). In 2016, it was over a third. That makes sending kids to college a whole lot harder than it used to be. If your family happens to have less than median household income, that barrier looks even higher, and is getting steeper.

MORE DISCLOSURE: The reason I don’t have a Ph.D. today is that two years into my Aerospace Engineering Ph.D. program, Arizona State University jacked up the tuition beyond my (not incosiderable at the time) ability to pay.

I’d like everyone in America to consider the following propositions:

  1. A bachelor’s degree is the new high-school diploma;
  2. Having an educated population is a requirement for our technology-based society;
  3. Without education, upward mobility is nearly impossible;
  4. Ergo, it is a requirement for our society to ensure that every citizen capable of getting a college degree gets one.

EVEN MORE DISCLOSURE: Horace Mann, often credited as the Father of Public Education, was born in the same town (Franklin, MA) that I was, and our family charity is a scholarship fund dedicated to his memory.

About Mann’s intellectual progressivism, the historian Ellwood P. Cubberley said: “No one did more than he to establish in the minds of the American people the conception that education should be universal, non-sectarian, free, and that its aims should be social efficiency, civic virtue, and character, rather than mere learning or the advancement of education ends.” (source: Wikipedia)

The Wikipedia article goes on to say: “Arguing that universal public education was the best way to turn unruly American children into disciplined, judicious republican citizens, Mann won widespread approval from modernizers, especially in the Whig Party, for building public schools. Most states adopted a version of the system Mann established in Massachusetts, especially the program for normal schools to train professional teachers.”

That was back in the mid-nineteenth century. At that time, the United States was in the midst of a shift from an agrarian to an industrial economy. We’ve since completed that transition and are now shifting to an information-based economy. In future, full participation in the workforce will require everyone to have at least a bachelor’s degree.

So, when progressive politicians, like Bernie Sanders, make noises about free universal college education, YOU should listen!

It’s about time we, as a society, owned up to the fact that times have changed a lot since the mid-nineteenth century. At that time, universal free education to about junior high school level was considered enough. Since then, it was extended to high school. It’s time to extend it further to the bachelor’s-degree level.

That doesn’t mean shutting down Ivy League colleges. For those who can afford them, private and for-profit colleges can provide superior educational experiences. But, publicly funded four-year colleges offering tuition-free education to everyone has become a strategic imperative.

How Do We Know What We Think We Know?

Rene Descartes Etching
Rene Descartes shocked the world by asserting “I think, therefore I am.” In the mid-seventeenth century that was blasphemy! William Holl/Shutterstock.com

9 May 2018 – In astrophysics school, learning how to distinguish fact from opinion was a big deal.

It’s really, really hard to do astronomical experiments. Let’s face it, before Neil Armstrong stepped, for the first time, on the Moon (known as “Luna” to those who like to call things by their right names), nobody could say for certain that the big bright thing in the night sky wasn’t made of green cheese. Only after going there and stepping on the ground could Armstrong truthfully report: “Yup! Rocks and dust!”

Even then, we had to take his word for it.

Only later on, after he and his buddies brought actual samples back to be analyzed on Earth (“Terra”) could others report: “Yeah, the stuff’s rock.”

Then, the rest of us had to take their word for it!

Before that, we could only look at the Moon. We couldn’t actually go there and touch it. We couldn’t complete the syllogism:

    1. It looks like a rock.
    2. It sounds like a rock.
    3. It smells like a rock.
    4. It feels like a rock.
    5. It tastes like a rock.
    6. Ergo. It’s a rock!

Before 1969, nobody could get past the first line of the syllogism!

Based on my experience with smart people over the past nearly seventy years, I’ve come to believe that the entire green-cheese thing started out when some person with more brains than money pointed out: “For all we know, the stupid thing’s made of green cheese.”

I Think, Therefore I Am

In that essay I read a long time ago, which somebody told me was written by some guy named Rene Descartes in the seventeenth century, which concluded that the only reason he (the author) was sure of his own existence was because he was asking the question, “Do I exist?” If he didn’t exist, who was asking the question?

That made sense to me, as did the sentence “Cogito ergo sum,” (also attributed to that Descartes character) which, according to what Mr. Foley, my high-school Latin teacher, convinced me the ancient Romans’ babble translates to in English, means “I think, therefore I am.”

It’s easier to believe that all this stuff is true than to invent some goofy conspiracy theory about it’s all having been made up just to make a fool of little old me.

Which leads us to Occam’s Razor.

Occam’s Razor

According to the entry in Wikipedia on Occam’s Razor, the concept was first expounded by “William of Ockham, a Franciscan friar who studied logic in the 14th century.” Often summarized (in Latin) as lex parsimoniae, or “the law of briefness” (again according to that same Wikipedia entry), what it means is: when faced with alternate explanations of anything believe the simplest.

So, when I looked up in the sky from my back yard that day in the mid-1950s, and that cute little neighbor girl tried to convince me that what I saw was a flying saucer, and even claimed that she saw little alien figures looking over the edge, I was unconvinced. It was a lot easier to believe that she was a poor observer, and only imagined the aliens.

When, the next day, I read a newspaper story (Yes, I started reading newspapers about a nanosecond after Miss Shay taught me to read in the first grade.) claiming that what we’d seen was a U.S. Navy weather balloon, my intuitive grasp of Occam’s Razor (That was, of course, long before I’d ever heard of Occam or learned that a razor wasn’t just a thing my father used to scrape hair off his face.) caused me to immediately prefer the newspaper’s explanation to the drivel Nancy Pastorello had shovelled out.

Taken together, these two concepts form the foundation for the philosophy of science. Basically, the only thing I know for certain is that I exist, and the only thing you can be certain of is that you exist (assuming, of course, you actually think, which I have to take your word for). Everything else is conjecture, and I’m only going to accept the simplest of alternative conjectures.

Okay, so, having disposed of the two bedrock principles of the philosophy of science, it’s time to look at how we know what we think we know.

How We Know What We Think We Know

The only thing I (as the only person I’m certain exists) can do is pile up experience upon experience (assuming my memories are valid), interpreting each one according to Occam’s Razor, and fitting them together in a pattern that maximizes coherence, while minimizing the gaps and resolving the greatest number of the remaining inconsistencies.

Of course, I quickly notice that other people end up with patterns that differ from mine in ways that vary from inconsequential to really serious disagreements.

I’ve managed to resolve this dilemma by accepting the following conclusion:

Objective reality isn’t.

At first blush, this sounds like ambiguous nonsense. It isn’t, though. To understand it fully, you have to go out and get a nice, hot cup of coffee (or tea, or Diet Coke, or Red Bull, or anything else that’ll give you a good jolt of caffeine), sit down in a comfortable chair, and spend some time thinking about all the possible ways those three words can be interpreted either singly or in all possible combinations. There are, according to my count, fifteen possible combinations. You’ll find that all of them can be true simultaneously. They also all pass the Occam’s Razor test.

That’s how we know what we think we know.

STEM Careers for Women

Woman engineer
Women have more career options than STEM. Courtesy Shutterstock.

6 April 2018 – Folks are going to HATE what I have to say today. I expect to get comments accusing me of being a slug-brained, misogynist reactionary imbicile. So be it, I often say things other people don’t want to hear, and I’m often accused of being a slug-brained imbecile. I’m sometimes accused of being reactionary.

I don’t think I’m usually accused of being mysogynist, so that’ll be a new one.

I’m not often accused of being misogynist because I’ve got pretty good credentials in the promoting-womens’-interests department. I try to pay attention to what goes on in my women-friends’ heads. I’m more interested in the girl inside than in their outsides. Thus, I actually do care about what’s important to them.

Historically, I’ve known a lot of exceptional women, and not a few who were not-so-exceptional, and, of course, I’ve met my share of morons. But, I’ve tried to understand what was going on in all their heads because I long ago noticed that just about everybody I encounter is able to teach me something if I pay attention.

So much for the preliminaries.

Getting more to the point of this blog entry, last week I listened to a Wilson Center webcast entitled “Opening Doors in Glass Walls for Women in STEM.” I’d hoped I might have something to add to the discussion, but I didn’t. I also didn’t hear much in the “new ideas” department, either. It was mostly “woe is us ’cause women get paid less than men,” and “we’ve made some progress, but there still aren’t many women in STEM careers,” and stuff like that.

Okay. For those who don’t already know, STEM is an acronym for “Science, Technology, Engineering and Math.” It’s a big thing in education and career-development circles because it’s critical to our national technological development.

Without going into the latest statistics (’cause I’m too lazy this morning to look ’em up), it’s pretty well acknowledged that women get paid a whole lot less than men for doing the same jobs, and a whole lot less than 50% of STEM workers are women despite their making up half the available workforce.

I won’t say much about the pay ranking, except to assert that paying someone less than they’re efforts are worth is just plain dumb. It’s dumb for the employer because good talent will vote with their feet for higher pay. It’s dumb for the employee because he, she, or it should vote with their feet by walking out the door to look for a more enlightened employer. It doesn’t matter whether you are a man or a woman, you don’t want to be dependent for your income on a a mismanaged company!

Enough said about the pay differential. What I want to talk about here is the idea that, since half the population is women, half the STEM workers should be women. I’m going to assert that’s equally dumb!

I do NOT assert that there is anything about women that makes them unsuited to STEM careers. It is true that women are significantly smaller physically (the last time I checked, the average American woman was 5’4″ tall, while the average American man was 5’10” tall with everything else more or less scaled to match), but that makes no nevermind for a STEM career. STEM jobs make demands on what’s between the ears, not what’s between the shoulders.

With regard to womens’ brains’ suitability for STEM jobs, experience has shown me that there’s no significant (to a STEM career) difference between them and male brains. Women are every bit as adept at independent thinking, puzzle solving, memory tasks, and just about any measurable talent that might make a difference to a STEM worker. I’ve seen no study that showed women to be inferior to men with respect to mathematical or abstract reasoning, either. In fact, some studies have purported to show the reverse.

On the other hand, as far as I know, EVERY culture traditionally separates jobs into “women’s work” and “men’s work.” Being a firm believer in Darwinian evolution, I don’t argue with Mommy Nature’s way, but do ask “Why?”

Many decades ago, my advanced lab instructor asserted that “tradition is the sum total of things our ancestors over the past four million years have found to work.” I completely agree with him, with the important proviso that things change.

Four million years ago, our ancestors didn’t have ceramic tile floors in their condos, nor did they have cars with remote keyless entry locks. It was a lot tougher for them than it is for us, and survival was far less assured.

They were the guys who decided to have men make the hand axes and arrowheads, and that women should weave the baskets and make the soup. Most importantly for our discussion, they decided women should change the diapers.

Fast forward four million years, and we’re still doing the same things, more or less. Things, however, have changed, and we’re now having to rethink that division of labor.

Some jobs, like digging ditches, still require physical prowess, which makes them more suited to men than women. I’m ignoring (but not forgetting) all the manual labor women are asked to do all over the world. That’s not what I’m talking about here. I’m talking about STEM jobs, which DON’T require physical prowess.

So, why don’t women go after those cushy, high-paying STEM jobs, and, equally significant, once they have one of those jobs, why is it so hard to keep them in them? One of the few things that came out of last week’s webinar (Remember this all started with my attending that webinar?) was the point that women leave STEM careers in droves. They abandon their hard-won STEM careers and go off to do something else.

The point I want to make with this essay is to suggest that maybe the reason women are underrepresented in STEM careers is that they actually have more options than men. Most importantly, they have the highly attractive (to them) option of the “homemaker” career.

Current thinking among the liberal intelligencia is that “homemaker” is not much of a career. I simply don’t accept that idea. Housewife is just as important a job as, say, truck driver, bank president, or technology journalist. So, pooh!

The homemaker option is not open to most men. We may be willing to help out around the house, and may even feel driven to do our part, or at least try to find some part that could be ours to do. But, I can’t think of one of my male friends who’d be comfortable shouldering the whole responsibility.

I assert that four million years of evolution has wired up human brains for sexual dimorphism with regard to “guy jobs” and “girl jobs.” It just feels right for guys to do jobs that seem to be traditionally guy things and for women to do jobs that seem to be traditionally theirs.

Now, throughout most of evolutionary time STEM jobs pretty much didn’t exist. One of the things our ancestors didn’t have four million years ago was trigonometry. In fact, they probably struggled with basic number theory. I did an experiment in high school that indicated that the crows in my back yard couldn’t count beyond two. Australopithecus Paranthropus was probably a better mathematician than that, but likely not by much.

So, one of the things we have now that has avoided being shaped by natural selection pressure is the option to persue a STEM career. It’s pretty much evolutionarily neutral. STEM careers are probably equally attractive (or repulsive) to women and men.

I mention “repulsive” for a very good reason. Preparing oneself for a STEM career is hard.

Mathematics, especially, is one of the few subjects that give many, if not most, people phobias. Frankly, arithmetic lost me on the second day of first grade when Miss Shay passed out a list of addition tables and told us to memorize it. I thought the idea of arithmetic was a gas. Memorizing tables, however, was not on my To Do list. I expect most people feel the same way.

Learning STEM subjects involves a $%^-load of memorizing! So, it’s no wonder girls would rather play with dolls (and boys with trucks) than study STEM subjects. Eventually, playing with trucks leads to STEM careers. Playing with dolls does not.

Grown up girls find they have the option of playing with dolls as a career. Grown up boys don’t. So, choosing a STEM career is something grown-up boys really want to do if they can, but for girls, not so much. They can find something to do that’s more satisfying with less work.

So, they vote with their feet. THAT may be why it’s so hard to get women into STEM careers in the first place, and then to keep them there for the long haul.

Before you start having apoplectic fits imagining that I’m making a broad generalization that females don’t like STEM careers, recognize that what I’m describing IS a broad theoretical generalization. It’s meant to be.

In the real world there are 300 million people in the United States, half of which are women, and each and every one of them gets to make a separate career choice for themself. Every one of them chooses for themself based on what they want to do with their life. Some choose STEM careers. Some don’t.

My point is that you shouldn’t just assume that half of STEM job slots ought be filled by women. Half of potential candidates may be women, but a fair fraction of them might prefer to go play somewhere else. It may be that they find women have more alternatives than do men. You may end up with more men slotting into those STEM jobs because they have less choice.

You know, being a housewife ain’t such a bad gig!

The Future of Personal Transportation

Israeli startup Griiip’s next generation single-seat race car demonstrating the world’s first motorsport Vehicle-to-Vehicle (V2V) communication application on a racetrack.

9 April 2018 – Last week turned out to be big for news about personal transportation, with a number of trends making significant(?) progress.

Let’s start with a report (available for download at https://gen-pop.com/wtf) by independent French market-research company Ipsos of responses from more than 3,000 people in the U.S. and Canada, and thousands more around the globe, to a survey about the human side of transportation. That is, how do actual people — the consumers who ultimately will vote with their wallets for or against advances in automotive technology — feel about the products innovators have been proposing to roll out in the near future. Today, I’m going to concentrate on responses to questions about self-driving technology and automated highways. I’ll look at some of the other results in future postings.

Perhaps the biggest take away from the survey is that approximately 25% of American respondents claim they “would never use” an autonomous vehicle. That’s a biggie for advocates of “ultra-safe” automated highways.

As my wife constantly reminds me whenever we’re out in Southwest Florida traffic, the greatest highway danger is from the few unpredictable drivers who do idiotic things. When surrounded by hundreds of vehicles ideally moving in lockstep, but actually not, what percentage of drivers acting unpredictably does it take to totally screw up traffic flow for everybody? One percent? Two percent?

According to this survey, we can expect up to 25% to be out of step with everyone else because they’re making their own decisions instead of letting technology do their thinking for them.

Automated highways were described in detail back in the middle part of the twentieth century by science-fiction writer Robert A. Heinlein. What he described was a scene where thousands of vehicles packed vast Interstates, all communicating wirelessly with each other and a smart fixed infrastructure that planned traffic patterns far ahead, and communicated its decisions with individual vehicles so they acted together to keep traffic flowing in the smoothest possible way at the maximum possible speed with no accidents.

Heinlein also predicted that the heros of his stories would all be rabid free-spirited thinkers, who wouldn’t allow their cars to run in self-driving mode if their lives depended on it! Instead, they relied on human intelligence, forethought, and fast reflexes to keep themselves out of trouble.

And, he predicted they would barely manage to escape with their lives!

I happen to agree with him: trying to combine a huge percentage of highly automated vehicles with a small percentage of vehicles guided by humans who simply don’t have the foreknowledge, reflexes, or concentration to keep up with the automated vehicles around them is a train wreck waiting to happen.

Back in the late twentieth century I had to regularly commute on the 70-mph parking lots that went by the name “Interstates” around Boston, Massachusetts. Vehicles were generally crammed together half a car length apart. The only way to have enough warning to apply brakes was to look through the back window and windshield of the car ahead to see what the car ahead of them was doing.

The result was regular 15-car pileups every morning during commute times.

Heinlein’s (and advocates of automated highways) future vision had that kind of traffic density and speed, but were saved from inevitable disaster by fascistic control by omniscient automated highway technology. One recalcitrant human driver tossed into the mix would be guaranteed to bring the whole thing down.

So, the moral of this story is: don’t allow manual-driving mode on automated highways. The 25% of Americans who’d never surrender their manual-driving priviledge can just go drive somewhere else.

Yeah, I can see THAT happening!

A Modest Proposal

With apologies to Johnathan Swift, let’s change tack and focus on a more modest technology: driver assistance.

Way back in the 1980s, George Lucas and friends put out the third in the interminable Star Wars series entitled The Empire Strikes Back. The film included a sequence that could only be possible in real life with help from some sophisticated collision-avoidance technology. They had a bunch of characters zooming around in a trackless forest on the moon Endor, riding what can only be described as flying motorcycles.

As anybody who’s tried trailblazing through a forest on an off-road motorcycle can tell you, going fast through virgin forest means constant collisions with fixed objects. As Bugs Bunny once said: “Those cartoon trees are hard!

Frankly, Luke Skywalker and Princess Leia might have had superhuman reflexes, but their doing what they did without collision avoidance technology strains credulity to the breaking point. Much easier to believe their little speeders gave them a lot of help to avoid running into hard, cartoon trees.

In the real world, Israeli companies Autotalks, and Griiip, have demonstrated the world’s first motorsport Vehicle-to-Vehicle (V2V) application to help drivers avoid rear-ending each other. The system works is by combining GPS, in-vehicle sensing, and wireless communication to create a peer-to-peer network that allows each car to send out alerts to all the other cars around.

So, imagine the situation where multiple cars are on a racetrack at the same time. That’s decidedly not unusual in a motorsport application.

Now, suppose something happens to make car A suddenly and unpredictably slow or stop. Again, that’s hardly an unusual occurrance. Car B, which is following at some distance behind car A, gets an alert from car A of a possible impending-collision situation. Car B forewarns its driver that a dangerous situation has arisen, so he or she can take evasive action. So far, a very good thing in a car-race situation.

But, what’s that got to do with just us folks driving down the highway minding our own business?

During the summer down here in Florida, every afternoon we get thunderstorms dumping torrential rain all over the place. Specifically, we’ll be driving down the highway at some ridiculous speed, then come to a wall of water obscuring everything. Visibility drops from unlimited to a few tens of feet with little or no warning.

The natural reaction is to come to a screeching halt. But, what happens to the cars barreling up from behind? They can’t see you in time to stop.


So, coming to a screeching halt is not the thing to do. Far better to keep going forward as fast as visibility will allow.

But, what if somebody up ahead panicked and came to a screeching halt? Or, maybe their version of “as fast as visibility will allow” is a lot slower than yours? How would you know?

The answer is to have all the vehicles equipped with the Israeli V2V equipment (or an equivalent) to forewarn following drivers that something nasty has come out of the proverbial woodshed. It could also feed into your vehicle’s collision avoidance system to step over the 2-3 seconds it takes for a human driver to say “What the heck?” and figure out what to do.

The Israelis suggest that the required chip set (which, of course, they’ll cheerfully sell you) is so dirt cheap that anybody can afford to opt for it in their new car, or retrofit it into their beat up old junker. They further suggest that it would be worthwhile for insurance companies to give a rake off on their premiums to help cover the cost.

Sounds like a good deal to me! I could get behind that plan.

What’s So Bad About Cryptocurrencies?

15 March 2018 – Cryptocurrency fans point to the vast “paper” fortunes that have been amassed by some bitcoin speculators, and sometimes predict that cryptocurrencies will eventually displace currencies issued and regulated by national governments. Conversely, banking-system regulators in several nations, most notably China and Russia, have outright bans on using cryptocurrency (specifically bitcoin) as a medium of exchange.

At the same time, it appears that fintech (financial technology) pundits pretty universally agree that blockchain technology, which is the enabling technology behind all cryptocurrency efforts, is the greatest thing since sliced bread, or, more to the point, the invention of ink on papyrus (IoP). Before IoP, financial records relied on clanky technologies like bundles of knotted cords, ceramic Easter eggs with little tokens baked inside, and that poster child for early written records, the clay tablet.

IoP immediately made possible tally sheets, journal and record books, double-entry ledgers, and spreadsheets. Without thin sheets of flat stock you could bind together into virtually unlimited bundles and then make indelible marks on, the concept of “bookkeeping” would be unthinkable. How could you keep books without having books to keep?

Blockchain is basically taking the concept of double-entry ledger accounting to the next (digital) level. I don’t pretend to fully understand how blockchain works. It ain’t my bailiwick. I’m a physicist, not a computer scientist.

To me, computers are tools. I think of them the same way I think of hacksaws, screw drivers, and CNC machines. I’m happy to have ’em and anxious to know how to use ’em. How they actually work and, especially, how to design them are details I generally find of marginal interest.

If it sounds like I’m backing away from any attempt to explain blockchains, that’s because I am. There are lots of people out there who are willing and able to explain blockchains far better than I could ever hope to.

Money, on the other hand, is infinitely easier to make sense of, and it’s something I studied extensively in MBA school. And, that’s really what cryptocurrencies are all about. It’s also the part cryptocurrency that its fans seem to have missed.

Once upon a time, folks tried to imbue their money (currency) with some intrinsic value. That’s why they used to make coins out of gold and silver. When Marco Polo introduced the Chinese concept of promissory notes to Renaissance Europe, it became clear that paper currency was possible provided there were two characteristics that went with it:

  • Artifact is some kind of thing (and I can’t identify it any more precisely than with the word “thing” because just about anything and everything has been tried and found to work) that people can pass between them to form a transaction; and
  • Underlying Value is some form of wealth that stands behind the artifact and gives an agreed-on value to the transaction.

For cryptocurrencies, the artifact consists of entries in a computer memory. The transactions are simply changes in the entries in computer memories. More specifically, blockchains amount to electronic ledger entries in a common database that forever leave an indelible record of transactions. (Sound familiar?)

Originally, the underlying value of traditional currencies was imagined to be the wealth represented by the metal in a coin, or the intrinsic value of a jewel, and so forth. More recently folks have begun imagining that the underlying value of government issued currency (dollars, pounds sterling, yuan) was fictitious. They began to believe the value of a dollar was whatever people believed it was.

According to this idea, anybody could issue currency as long as they got a bunch of people together to agree that it had some value. Put that concept together with the blockchain method of common recordkeeping, and you get cryptocurrency.

I’m oversymplifying all this in an effort to keep this posting within rational limits and to make a point, so bear with me. The point I’m trying to make is that the difference between any cryptocurrency and U.S. dollars is that these cryptocurrencies have no underlying value.

I’ve heard the argument that there’s no underlying value behind U.S. dollars, either. That just ain’t so! Having dollars issued by the U.S. government and tied to the U.S. tax base connects dollars to the U.S. economy. In other words, the underlying value backing up the artifacts of U.S. dollars is the entire U.S. economy. The total U.S. economic output in 2016, as measured by gross domestic product (GDP) was just under 20 trillion dollars. That ain’t nothing!