Immigration in Perspective

Day without immigrants protest
During ‘A Day Without Immigrants’ , more than 500,000 people marched down Wilshire Boulevard in Los Angeles, CA to protest a proposed federal crackdown on illegal immigration. Krista Kennell / Shutterstock.com

17 October 2018 – Immigration is, by and large, a good thing. It’s not always a good thing, and it carries with it a host of potential problems, but in general immigration is better than its opposite: emigration. And, there are a number of reasons for that.

Immigration is movement toward some place. Emigration is flow away from a place.

Mathematically, population shifts are described by a non-homogeneous second-order differential equation. I expect that statement means absolutely nothing to about half the target audience for this blog, and a fair fraction of the others have (like me) forgotten most of what they ever knew (or wanted to know) about such equations. So, I’ll start with a short review of the relevant points of how the things behave.

It’ll help the rest of this blog make a lot more sense, so bear with me.

Basically, the relevant non-homogeneous second-order differential equation is something called the “diffusion equation.” Leaving the detailed math aside, what this equation says is that the rate of migration of just about anything from one place to another depends on the spatial distribution of population density, a mobility factor, and a driving force pushing the population in one direction or the other.

Things (such as people) “diffuse” from places with higher densities to those with lower densities.

That tendency is moderated by a “mobility” factor that expresses how easy it is to get from place to place. It’s hard to walk across a desert, so mobility of people through a desert is low. Similarly, if you build a wall across the migration path, that also reduces mobility. Throwing up all kinds of passport checks, visas and customs inspections also reduces mobility.

Giving people automobiles, buses and airplanes, on the other hand, pushes mobility up by a lot!

But, changing mobility only affects the rate of flow. It doesn’t do anything to change the direction of flow, or to actually stop it. That’s why building walls has never actually worked. It didn’t work for the First Emperor of China. It didn’t work for Hadrian. It hasn’t done much for the Israelis, either.

Direction of flow is controlled by a forcing term. Existence of that forcing term is what makes the equation “non-homogeneous” rather than “homogeneous.” The homogeneous version (without the forcing term) is called the “heat equation” because it models what dumb-old thermal energy does.

Things that can choose what to do (like people), and have feet to help them act on their choices, get to “vote with their feet.” That means they can go where they want, instead of always floating downstream like a dead leaf.

The forcing term largely accounts for the desirability of being in one place instead of another. For example, the United States has a reputation for being a nice place to live. Thus, people try to flock here in droves from places that are not so nice. Thus, there’s a forcing term that points people from other places to the U.S.

That’s the big reason you want to live in a country that has immigration issues, rather than one with emigration issues. The Middle East had a serious emigration problem in 2015. For a number of reasons, it had become a nasty place to live. Folks that lived there wanted out in a big way. So, they voted with their feet.

There was a huge forcing term that pushed a million people from the Middle East to elsewhere, specifically Europe. Europe was considered a much nicer place to be, so people were willing to go through Hell to get there. Thus: emigration from the Middle East, and immigration into Europe.

In another example Nazi occupation in the first half of the twentieth century made most places in Europe distasteful, especially for certain groups of people. So, the forcing term pushed a lot of people across the Atlantic toward America. In 1942 Michael Curtiz made a film about that. It was called Casablanca and is arguably one of the greatest films Humphrey Bogart starred in.

Similarly, for decades Mexico had some serious problems with poverty, organized crime and corruption. Those are things that make a place nasty to live in, so there was a big forcing function pushing people to cross the border into the much nicer United States.

In recent decades, regime change in Mexico cleaned up a lot of the country’s problems, so migration from Mexico to the United States dropped like a stone in the last years of the Obama administration. When Mexico became a nicer place to live, people stopped wanting to move away.

Duh!

There are two morals to this story:

  1. If you want to cut down on immigration from some other country, help that other country become a nicer place to live. (Conversely, you could turn your own country into a third-world toilet so nobody wants to come in, but that’s not what we want.)
  2. Putting up walls and other barriers to immigration doesn’t stop it. They only slow it down.

We’re All Immigrants

I’d should subtitle this section, “The Bigot’s Lament.”

There isn’t a bi-manual (two-handed) biped (two-legged) creature anywhere in North or South America who isn’t an immigrant or a descendant of immigrants.

There have been two major influxes of human population in the history (and pre-history) of the Americas. The first occurred near the end of the last Ice Age, and the second occurred during the European Age of Discovery.

Before about ten-thousand years ago, there were horses, wolves, saber-tooth tigers, camels(!), elephants, bison and all sorts of big and little critters running around the Americas, but not a single human being.

(The actual date is controversial, but you get the idea.)

Anatomically modern humans, (and there aren’t any others because everyone else went extinct tens of thousands of years ago) developed in East Africa about 200,000 years ago.

They were, by the way, almost certainly negroes. A fact every racist wants to ignore is that: everybody has black ancestors! You can’t hate black people without hating your own forefathers.

More important for this discussion, however, is that every human being in North and South America is descended from somebody who came here from somewhere else. So-called “Native Americans” came here in the Pleistocene Epoch, most likely from Siberia. Most everybody else showed up after Christopher Columbus accidentally fell over North America.

That started the second big migration of people into the Americas: European colonization.

Mostly these later immigrants were imported to fill America’s chronic labor shortage.

America’s labor shortage has persisted since the Spanish conquistadores pretty much wiped out the indigenous people, leaving the Spaniards with hardly anybody to do the manual labor on which their economy depended. Waves of forced and unforced migration have never caught up. We still have a chronic labor shortage.

Immigrants generally don’t come to take jobs from “real” Americans. They come here because there are by-and-large more available jobs than workers.

Currently, natural reductions in birth rates among better educated, better housed, and generally wealthier Americans have left the United States (similar to most developed countries) with the problem that the the working-age population is declining while the older, retired population expands. That means we haven’t got enough young squirts to support us old farts in retirement.

The only viable solution is to import more young squirts. That means welcoming working-age immigrants.

End of story.

Climate Models Bat Zero

Climate models vs. observations
Whups! Since the 1970s, climate models have overestimated global temperature rise by … a lot! Cato Institute

The articles discussed here reflect the print version of The Wall Street Journal, rather than the online version. Links to online versions are provided. The publication dates and some of the contents do not match.

10 October 2018 – Baseball is well known to be a game of statistics. Fans pay as much attention to statistical analysis of performance by both players and teams as they do to action on the field. They hope to use those statistics to indicate how teams and individual players are likely to perform in the future. It’s an intellectual exercise that is half the fun of following the sport.

While baseball statistics are quoted to three decimal places, or one part in a thousand, fans know to ignore the last decimal place, be skeptical of the second decimal place, and recognize that even the first decimal place has limited predictive power. It’s not that these statistics are inaccurate or in any sense meaningless, it’s that they describe a situation that seems predictable, yet is full of surprises.

With 18 players in a game at any given time, a complex set of rules, and at least three players and an umpire involved in the outcome of every pitch, a baseball game is a highly chaotic system. What makes it fun is seeing how this system evolves over time. Fans get involved by trying to predict what will happen next, then quickly seeing if their expectations materialize.

The essence of a chaotic system is conditional unpredictability. That is, the predictability of any result drops more-or-less drastically with time. For baseball, the probability of, say, a player maintaining their batting average is fairly high on a weekly basis, drops drastically on a month-to-month basis, and simply can’t be predicted from year to year.

Folks call that “streakiness,” and it’s one of the hallmarks of mathematical chaos.

Since the 1960s, mathematicians have recognized that weather is also chaotic. You can say with certainty what’s happening right here right now. If you make careful observations and take into account what’s happening at nearby locations, you can be fairly certain what’ll happen an hour from now. What will happen a week from now, however, is a crapshoot.

This drives insurance companies crazy. They want to live in a deterministic world where they can predict their losses far into the future so that they can plan to have cash on hand (loss reserves) to cover them. That works for, say, life insurance. It works poorly for losses do to extreme-weather events.

That’s because weather is chaotic. Predicting catastrophic weather events next year is like predicting Miami Marlins pitcher Drew Steckenrider‘s earned-run-average for the 2019 season.

Laugh out loud.

Notes from 3 October

My BS detector went off big-time when I read an article in this morning’s Wall Street Journal entitled “A Hotter Planet Reprices Risk Around the World.” That headline is BS for many reasons.

Digging into the article turned up the assertion that insurance providers were using deterministic computer models to predict risk of losses due to future catastrophic weather events. The article didn’t say that explicitly. We have to understand a bit about computer modeling to see what’s behind the words they used. Since I’ve been doing that stuff since the 1970s, pulling aside the curtain is fairly easy.

I’ve also covered risk assessment in industrial settings for many years. It’s not done with deterministic models. It’s not even done with traditional mathematics!

The traditional mathematics you learned in grade school uses real numbers. That is numbers with a definite value.

Like Pi.

Pi = 3.1415926 ….

We know what Pi is because it’s measurable. It’s the ratio of a circle’s circumference to its diameter.

Measure the circumference. Measure the diameter. Then divide one by the other.

The ancient Egyptians performed the exercise a kazillion times and noticed that, no matter what circle you used, no matter how big it was, whether you drew it on papyrus or scratched it on a rock or laid it out in a crop circle, you always came out with the same number. That number eventually picked up the name “Pi.”

Risk assessment is NOT done with traditional arithmetic using deterministic (real) numbers. It’s done using what’s called “fuzzy logic.”

Fuzzy logic is not like the fuzzy thinking used by newspaper reporters writing about climate change. The “fuzzy” part simply means it uses fuzzy categories like “small,” “medium” and “large” that don’t have precisely defined values.

While computer programs are perfectly capable of dealing with fuzzy logic, they won’t give you the kind of answers cost accountants are prepared to deal with. They won’t tell you that you need a risk-reserve allocation of $5,937,652.37. They’ll tell you something like “lots!”

You can’t take “lots” to the bank.

The next problem is imagining that global climate models could have any possible relationship to catastrophic weather events. Catastrophic weather events are, by definition, catastrophic. To analyze them you need the kind of mathermatics called “catastrophe theory.”

Catastrophe theory is one of the underpinnings of chaos. In Steven Spielberg’s 1993 movie Jurassic Park, the character Ian Malcolm tries to illustrate catastrophe theory with the example of a drop of water rolling off the back of his hand. Whether it drips off to the right or left depends critically on how his hand is tipped. A small change creates an immense difference.

If a ball is balanced at the edge of a table, it can either stay there or drop off, and you can’t predict in advance which will happen.

That’s the thinking behind catastrophe theory.

The same analysis goes into predicting what will happen with a hurricane. As I recall, at the time Hurricane Florence (2018) made landfall, most models predicted it would move south along the Appalachian Ridge. Another group of models predicted it would stall out to the northwest.

When push came to shove, however, it moved northeast.

What actually happened depended critically on a large number of details that were too small to include in the models.

How much money was lost due to storm damage was a result of the result of unpredictable things. (That’s not an editing error. It was really the second order result of a result.) It is a fundamentally unpredictable thing. The best you can do is measure it after the fact.

That brings us to comparing climate-model predictions with observations. We’ve got enough data now to see how climate-model predictions compare with observations on a decades-long timescale. The graph above summarizes results compiled in 2015 by the Cato Institute.

Basically, it shows that, not only did the climate models overestimate the temperature rise from the late 1970s to 2015 by a factor of approximately three, but in the critical last decade, when the computer models predicted a rapid rise, the actual observations showed that it nearly stalled out.

Notice that the divergence between the models and the observations increased with time. As I’ve said, that’s the main hallmark of chaos.

It sure looks like the climate models are batting zero!

I’ve been watching these kinds of results show up since the 1980s. It’s why by the late 1990s I started discounting statements like the WSJ article’s: “A consensus of scientists puts blame substantially on emissios greenhouse gasses from cars, farms and factories.”

I don’t know who those “scientists” might be, but it sounds like they’re assigning blame for an effect that isn’t observed. Real scientists wouldn’t do that. Only politicians would.

Clearly, something is going on, but what it is, what its extent is, and what is causing it is anything but clear.

In the data depicted above, the results from global climate modeling do not look at all like the behavior of a chaotic system. The data from observations, however, do look like what we typically get from a chaotic system. Stuff moves constantly. On short time scales it shows apparent trends. On longer time scales, however, the trends tend to evaporate.

No wonder observers like Steven Pacala, who is Frederick D. Petrie Professor in Ecology and Evolutionary Biology at Princeton University and a board member at Hamilton Insurance Group, Ltd., are led to say (as quoted in the article): “Climate change makes the historical record of extreme weather an unreliable indicator of current risk.”

When you’re dealing with a chaotic system, the longer the record you’re using, the less predictive power it has.

Duh!

Another point made in the WSJ article that I thought was hilarious involved prediction of hurricanes in the Persian Gulf.

According to the article, “Such cyclones … have never been observed in the Persian Gulf … with new conditions due to warming, some cyclones could enter the Gulf in the future and also form in the Gulf itself.”

This sounds a lot like a tongue-in-cheek comment I once heard from astronomer Carl Sagan about predictions of life on Venus. He pointed out that when astronomers observe Venus, they generally just see a featureless disk. Science fiction writers had developed a chain of inferences that led them from that observation of a featureless disk to imagining total cloud cover, then postulating underlying swamps teeming with life, and culminating with imagining the existence of Venusian dinosaurs.

Observation: “We can see nothing.”

Conclusion: “There are dinosaurs.”

Sagan was pointing out that, though it may make good science fiction, that is bad science.

The WSJ reporters, Bradley Hope and Nicole Friedman, went from “No hurricanes ever seen in the Persian Gulf” to “Future hurricanes in the Persian Gulf” by the same sort of logic.

The kind of specious misinformation represented by the WSJ article confuses folks who have genuine concerns about the environment. Before politicians like Al Gore hijacked the environmental narrative, deflecting it toward climate change, folks paid much more attention to the real environmental issue of pollution.

Insurance losses from extreme weather events
Actual insurance losses due to catastrophic weather events show a disturbing trend.

The one bit of information in the WSJ article that appears prima facie disturbing is contained in the graph at right.

The graph shows actual insurance losses due to catastrophic weather events increasing rapidly over time. The article draws the inference that this trend is caused by human-induced climate change.

That’s quite a stretch, considering that there are obvious alternative explanations for this trend. The most likely alternative is the possibility that folks have been building more stuff in hurricane-prone areas. With more expensive stuff there to get damaged, insurance losses will rise.

Again: duh!

Invoking Occam’s Razor (choose the most believable of alternative explanations), we tend to favor the second explanation.

In summary, I conclude that the 3 October article is poor reporting that draws conclusions that are likely false.

Notes from 4 October

Don’t try to find the 3 October WSJ article online. I spent a couple of hours this morning searching for it, and came up empty. The closest I was able to get was a draft version that I found by searching on Bradley Hope’s name. It did not appear on WSJ‘s public site.

Apparently, WSJ‘s editors weren’t any more impressed with the article than I was.

The 4 October issue presents a corroboration of my alternative explanation of the trend in insurance-loss data: it’s due to a build up of expensive real estate in areas prone to catastrophic weather events.

In a half-page expose entitled “Hurricane Costs Grow as Population Shifts,” Kara Dapena reports that, “From 1980 to 2017, counties along the U.S. shoreline that endured hurricane-strength winds from Florence in September experienced a surge in population.”

In the end, this blog posting serves as an illustration of four points I tried to make last month. Specifically, on 19 September I published a post entitled: “Noble Whitefoot or Lying Blackfoot?” in which I laid out four principles to use when trying to determine if the news you’re reading is fake. I’ll list them in reverse of the order I used in last month’s posting, partly to illustrate that there is no set order for them:

  • Nobody gets it completely right  ̶  In the 3 October WSJ story, the reporters got snookered by the climate-change political lobby. That article, taken at face value, has to be stamped with the label “fake news.”
  • Does it make sense to you? ̶  The 3 October fake news article set off my BS detector by making a number of statements that did not make sense to me.
  • Comparison shopping for ideas  ̶  Assertions in the suspect article contradicted numerous other sources.
  • Consider your source  ̶  The article’s source (The Wall Street Journal) is one that I normally trust. Otherwise, I likely never would have seen it, since I don’t bother listening to anyone I catch in a lie. My faith in the publication was restored when the next day they featured an article that corrected the misinformation.

Doing Business with Bad Guys

Threatened with a gun
Authoritarians make dangerous business partners. rubikphoto/Shutterstock

3 October 2018 – Parents generally try to drum into their childrens’ heads a simple maxim: “People judge you by the company you keep.

Children (and we’re all children, no matter how mature and sophisticated we pretend to be) just as generally find it hard to follow that maxim. We all screw it up once in a while by succumbing to the temptation of some perceived advantage to be had by dealing with some unsavory character.

Large corporations and national governments are at least as likely to succumb to the prospect of making a fast buck or signing some treaty with peers who don’t entertain the same values we have (or at least pretend to have). Governments, especially, have a tough time in dealing with what I’ll call “Bad Guys.”

Let’s face it, better than half the nations of the world are run by people we wouldn’t want in our living rooms!

I’m specifically thinking about totalitarian regimes like the People’s Republic of China (PRC).

‘Way back in the last century, Mao Tse-tung (or Mao Zedong, depending on how you choose to mis-spell the anglicization of his name) clearly placed China on the “Anti-American” team, espousing a virulent form of Marxism and descending into the totalitarian authoritarianism Marxist regimes are so prone to. This situation continued from the PRC’s founding in 1949 through 1972, when notoriously authoritarian-friendly U.S. President Richard Nixon toured China in an effort to start a trade relationship between the two countries.

Greedy U.S. corporations quickly started falling all over themselves in an effort to gain access to China’s enormous potential market. Mesmerized by the statistics of more than a billion people spread out over China’s enormous land mass, they ignored the fact that those people were struggling in a subsistence-agriculture economy that had collapsed under decades of mis-managment by Mao’s authoritarian regime.

What they hoped those generally dirt-poor peasants were going to buy from them I never could figure out.

Unfortunately, years later I found myself embedded in the management of one of those starry-eyed multinational corporations that was hoping to take advantage of the developing Chinese electronics industry. Fresh off our success launching Test & Measurement Europe, they wanted to launch a new publication called Test & Measurement China. Recalling the then-recent calamity ending the Tiananmen Square protests of 1989, I pulled a Nancy Reagan and just said “No.”

I pointed out that the PRC was still run by a totalitarian, authoritarian regime, and that you just couldn’t trust those guys. You never knew when they were going to decide to sacrifice you on the altar of internal politics.

Today, American corporations are seeing the mistakes they made in pursuit of Chinese business, which like Robert Southey’s chickens, are coming home to roost. In 2015, Chinese Premier Li Keqiang announced the “Made in China 2025” plan to make China the World’s technology leader. It quickly became apparent that Mao’s current successor, Xi Jinping intends to achieve his goals by building on technology pilfered from western companies who’d naively partnered with Chinese firms.

Now, their only protector is another authoritarian-friendly president, Donald Trump. Remember it was Trump who, following his ill-advised summit with North Korean strongman Kim Jong Un, got caught on video enviously saying: “He speaks, and his people sit up at attention. I want my people to do the same.

So, now these corporations have to look to an American would-be dictator for protection from an entrenched Chinese dictator. No wonder they find themselves screwed, blued, and tattooed!

Governments are not immune to the PRC’s siren song, either. Pundits are pointing out that the PRC’s vaunted “One Belt, One Road” initiative is likely an example of “debt-trap diplomacy.”

Debt-trap diplomacy is a strategy similar to organized crime’s loan-shark operations. An unscrupulous cash-rich organization, the loan shark, offers funds to a cash-strapped individual, such as an ambitious entrepreneur, in a deal that seems too good to be true. It’s NOT true because the deal comes in the form of a loan at terms that nearly guarantee that the debtor will default. The shark then offers to write off the debt in exchange for the debtor’s participation in some unsavory scheme, such as money laundering.

In the debt-trap diplomacy version, the PRC stands in the place of the loan shark while some emerging-economy nation, such as, say, Malaysia, accepts the unsupportable debt. In the PRC/ Malaysia case, the unsavory scheme is helping support China’s imperial ambitions in the western Pacific.

Earlier this month, Malaysia wisely backed out of the deal.

It’s not just the post-Maoist PRC that makes a dangerous place for western corporations to do business, authoritarians all over the world treat people like Heart’s Barracuda. They suck you in with mesmerizing bright and shiny promises, then leave you twisting in the wind.

Yes, I’ve piled up a whole mess of mixed metaphors here, but I’m trying to drive home a point!

Another example of the traps business people can get into by trying to deal with authoritarians is afforded by Danske Bank’s Estonia branch and their dealings with Vladimir Putin‘s Russian kleptocracy. Danske Bank is a Danish financial institution with a pan-European footprint and global ambitions. Recent release of a Danske Bank internal report produced by the Danish law firm Bruun & Hjejle says that the Estonia branch engaged in “dodgy dealings” with numerous corrupt Russian officials. Basically, the bank set up a scheme to launder money stolen from Russian tax receipts by organized criminals.

The scandal broke in Russia in June of 2007 when dozens of police officers raided the Moscow offices of Hermitage Global, an activist fund focused on global emerging markets. A coverup by Kremlin authorities resulted in the death (while in a Russian prison) of Sergei Leonidovich Magnitsky, a Russian tax accountant who specialized in anti-corruption activities.

Magnitsky’s case became an international cause célèbre. The U.S. Congress and President Barack Obama enacted the Magnitsky Act at the end of 2012, barring, among others, those Russian officials believed to be involved in Magnitsky’s death from entering the United States or using its banking system.

Apparently, the purpose of the infamous Trump Tower meeting of June 9, 2016 was, on the Russian side, an effort to secure repeal of the Magnitsky Act should then-candidate Trump win the election. The Russians dangled release of stolen emails incriminating Trump-rival Hillary Clinton as bait. This activity started the whole Mueller Investigation, which has so far resulted in dozens of indictments for federal crimes, and at least eight guilty pleas or convictions.

The latest business strung up in this mega-scandal was the whole corrupt banking system of Cyprus, whose laundering of Russian oligarchs’ money amounted to over $20B.

The moral of this story is: Don’t do business with bad guys, no matter how good they make the deal look.

News vs. Opinion

News reporting
Journalists report reopening of Lindt cafe in Sydney after ISIS siege, 20 March 2015. M. W. Hunt / Shutterstock.com

26 September 2018 – This is NOT a news story!

Last week I spent a lot of space yammering on about how to tell fake news from the real stuff. I made a big point about how real news organizations don’t allow editorializing in news stories. I included an example of a New York Times op-ed (opinion editorial) that was decidedly not a news story.

On the other hand, last night I growled at my TV screen when I heard a CNN commentator say that she’d been taught that journalists must have opinions and should voice them. I growled because her statement could be construed to mean something anathema to journalistic ethics. I’m afraid way too many TV journalists may be confused about this issue. Certainly too many news consumers are confused!

It’s easy to get confused. For example, I got myself in trouble some years ago in a discussion over dinner and drinks with Andy Wilson, Founding Editor at Vision Systems Design, over a related issue that is less important to political-news reporting, but is crucial for business-to-business (B2B) journalism: the role of advertising in editorial considerations.

Andy insisted upon strictly ignoring advertiser needs when making editorial decisions. I advocated a more nuanced approach. I said that ignoring advertiser needs and desires would lead to cutting oneself off from our most important source of technology-trends information.

I’m not going to delve too deeply into that subject because it has only peripheral significance for this blog posting. The overlap with news reporting is that both activities involve dealing with biased sources.

My disagreement with Andy arose from my veteran-project-manager’s sensitivity to all stakeholders in any activity. In the B2B case, editors have several ways of enforcing journalistic discipline without biting the hand that feeds us. I was especially sensitive to the issue because I specialized in case studies, which necessarily discuss technology embodied in commercial products. Basically, I insisted on limiting (to one) actual product mentions in each story, and suppressing any claims that the mentioned product was the only possible way to access the embodied technology. In essence, I policed the stories I wrote or edited to avoid the “buy our stuff” messages that advertisers love and that send chills down Andy’s (and my) spine.

In the news-media realm, journalists need to police their writing for “buy our ideas” messages in news stories. “Just the facts, ma’am” needs to be the goal for news. Expressing editorial opinions in news stories is dangerous. That’s when the lines between fake news and real news get blurry.

Those lines need to be sharp to help news consumers judge the … information … they’re being fed.

Perhaps “information” isn’t exactly the right word.

It might be best to start with the distinction between “information” and “data.”

The distinction is not always clear in a general setting. It is, however, stark in the world of science, which is where I originally came from.

What comes into our brains from the outside world is “data.” It’s facts and figures. Contrary to what many people imagine, “data” is devoid of meaning. Scientists often refer to it as “raw data” to emphasize this characteristic.

There is nothing actionable in raw data. The observation that “the sky is blue” can’t even tell you if the sky was blue yesterday, or how likely it is to be blue tomorrow. It just says: “the sky is blue.” End of story.

Turning “data” into “information” involves combining it with other, related data, and making inferences about or deductions from patterns perceivable in the resulting superset. The process is called “interpretation,” and it’s the second step in turning data into knowledge. It’s what our brains are good for.

So, does this mean that news reporters are to be empty-headed recorders of raw facts?

Not by a long shot!

The CNN commentator’s point was that reporters are far from empty headed. While learning their trade, they develop ways to, for example, tell when some data source is lying to them.

In the hard sciences it’s called “instrumental error,” and experimental scientists (as I was) spend careers detecting and eliminating it.

Similarly, what a reporter does when faced with a lying source is the hard part of news reporting. Do you say, “This source is unreliable” and suppress what they told you? Do you report what they said along with a comment that they’re a lying so-and-so who shouldn’t be believed? Certainly, you try to find another source who tells you something you can rely on. But, what if the second source is lying, too?

???

That’s why we news consumers have to rely on professionals who actually care about the truth for our news.

On the other hand, nobody goes to news outlets for just raw data. We want something we can use. We want something actionable.

Most of us have neither the time nor the tools to interpret all the drivel we’re faced with. Even if we happen to be able to work it out for ourselves, we could always use some help, even if just to corroborate our own conclusions.

Who better to help us interpret the data (news) and glean actionable opinions from it than those journalists who’ve been spending their careers listening to the crap newsmakers want to feed us?

That’s where commentators come in. The difference between an editor and a reporter is that the editor has enough background and experience to interpret the raw data and turn it into actionable information.

That is: opinion you can use to make a decision. Like, maybe, who to vote for.

People with the chops to interpret news and make comments about it are called “commentators.”

When I was looking to hire what we used to call a “Technical Editor” for Test & Measurement World, I specifically looked for someone with a technical degree and experience developing the technology I wanted that person to cover. So, for example, when I was looking for someone to cover advances in testing of electronics for the telecommunications industry, I went looking for a telecommunications engineer. I figured that if I found one who could also tell a story, I could train them to be a journalist.

That brings us back to the CNN commentator who thought she should have opinions.

The relevant word here is “commentator.”

She’s not just a reporter. To be a commentator, she supposedly has access to the best available “data” and enough background to skillfully interpret it. So, what she was saying is true for a commentator rather than just a reporter.

Howsomever, ya can’t just give a conclusion without showing how the facts lead to it.

Let’s look at how I assemble a post for this blog as an example of what you should look for in a reliable op-ed piece.

Obviously, I look for a subject about which I feel I have something worthwhile to say. Specifically, I look for what I call the “take-home lesson” on which I base every piece of blather I write.

The “take-home lesson” is the basic point I want my reader to remember. Come Thursday next you won’t remember every word or even every point I make in this column. You’re (hopefully) going to remember some concept from it that you should be able to summarize in one or two sentences. It may be the “call to action” my eighth-grade English teacher, Miss Langley, told me to look for in every well-written editorial. Or, it could be just some idea, such as “Racism sucks,” that I want my reader to believe.

Whatever it is, it’s what I want the reader to “take home” from my writing. All the rest is just stuff I use to convince the reader to buy into the “take-home lesson.”

Usually, I start off by providing the reader with some context in which to fit what I have to say. It’s there so that the reader and I start off on the same page. This is important to help the reader fit what I have to say into the knowledge pattern of their own mind. (I hope that makes sense!)

After setting the context, I provide the facts that I have available from which to draw my conclusion. The conclusion will be, of course, the “take-home lesson.”

I can’t be sure that my readers will have the facts already, so I provide links to what I consider reliable outside sources. Sometimes I provide primary sources, but more often they’re secondary sources.

Primary sources for, say, a biographical sketch of Thomas Edison would be diary pages or financial records, which few readers would have immediate access to.

A secondary source might be a well-researched entry on, say, the Biography.com website, which the reader can easily get access to and which can, in turn, provide links to useful primary sources.

In any case, I try to provide sources for each piece of data on which I base my conclusion.

Then, I’ll outline the logical path that leads from the data pattern to my conclusion. While the reader should have no need to dispute the “data,” he or she should look very carefully to see whether my logic makes sense. Does it lead inevitably from the data to my conclusion?

Finally, I’ll clearly state the conclusion.

In general, every consumer of ideas should look for this same pattern in every information source they use.

Authoritarianism vs. Democracy

Seating for the French National Assembly - 1789
Seating arrangements in the room used by the National Constituent Assembly at the start of the French Revolution led to two factions gathering together on opposite sides of the hall. The revolutionaries happened to gather on the left, while those opposed to revolution gathered on the right. By Marzolino/Shutterstock

14 September 2018 – This is an extra edition of my usual weekly post on this blog. I’m writing it to tell you about an online event called “Open Future” put on by The Economist weekly newsmagazine and to encourage you to participate by visiting the URL www.economist.com/openfuture. The event is scheduled for tomorrow, 15 September 2018, but the website is already up, and some parts of the event are already live.

The newsmagazine’s Editor-in-Chief, Zanny Minton Beddoes, describes the event as “an initiative to remake the case for liberal values and policies in the 21st century.”

Now, don’t get put off by the use of the word “liberal.” These folks are Brits and, as I’ve often quipped: “The British invented the language, but they still can’t spell it or pronounce it.” They also sometimes use words to mean different things.

What The Economist calls “liberal” is not what we in the U.S. usually think of as liberal. You can get a clear idea of what The Economist refers to as “liberal” by perusing the list of seminal works in their article “The literature of liberalism.”

We in the U.S. are confused by typically hearing the word “liberal” used to describe leftist policies classed as Liberal with a capital L. Big-L Liberals have co-opted the word to refer to the agenda of the Democratic Party, which, as I’ll explain below, isn’t quite what The Economist refers to as small-L liberal.

The Economist‘s idea of liberal is more like what we usually call “libertarian.” Libertarians tend to take some ideas usually reserved for the left, and some from the right. Their main tenet, however, which is best expressed as “think for yourself,” is anathema to both ends of the political spectrum.

But, those of us in the habit of thinking for ourselves like it.

Unfortunately (or maybe not) small-L libertarianism is in danger of being similarly co-opted in the U.S. by the current big-L Libertarian Party. But, that’s a rant for another day!

What’s more important today is understanding a different way of dividing up political ideologies.

Left vs. Right

Two-hundred twenty-nine years ago, political discourse invented the terms “The Left” and “The Right” as a means of classifying political parties along ideological lines. The terms arose at the start of the French Revolution when delegates to the National Constituent Assembly still included foes of the revolution as well as its supporters.

As the ancient Greek proverb says, “birds of a feather flock together,” so supporters of revolution tended to pick seats near each other, and those against it sat together as well. Those supporting the revolution happened to sit on the left side of the hall, so those of more conservative bent gathered on the right. The terminology became institutionalized, so we now divide the political spectrum between a liberal/progressive Left and a conservative Right.

While the Left/Right-dichotomy works for describing what happened during the first meeting of the French National Constituent Assembly, it poorly reflects the concepts humans actually use to manage governments. In the real world, there is an equally simple, but far more relevant way of dividing up political views: authoritarianism versus democracy.

Authoritarians are all those people (and there’s a whole bunch of them) who want to tell everybody else what to do. It includes most religious leaders, most alpha males (and females), and, in fact, just about everyone who wants to lead anything from teenage gangs to the U.N. General Assembly. Patriarchal and matriarchal families are run on authoritarian principles.

Experience, by the way, shows that authoritarianism is a lousy way to run a railroad, despite the fact that virtually every business on the Planet is organized that way. Managment consultants and organizational-behavior researchers pretty much universally agree that spreading decision making throughout the organization, even down to the lowest levels, makes for the most robust, healthiest companies.

If you want your factory’s floors to be clean, make sure the janitors have a say in what mops and buckets to use!

The opposite of authoritarianism is democracy. Little-D democracy is the antithesis of authoritarianism. Small-D democrats don’t tell people what to do, they ask them what they (the people) want to do, and try to make it possible for them to do it. It takes a lot more savvy to balance all the conflicting desires of all those people than to petulently insist on things being done your way, but, if you can make it work, you get better results.

Now, political discourse based on the Left/Right dichotomy is simple and easy for political parties to espouse. Big-D Democrats have a laundry list of causes they champion. Similarly, Republicans have a laundry list of what they want to promote.

Those lists, however, absolutely do not fit the democracy/authoratarianism picture. And, there’s no reason to expect them to.

Politicians, generally, want to tell other people what to do. If they didn’t, they’d go do something else. That’s the very nature of politics. Thus, by and large, politicians are authoritarians.

They dress their plans up in terms that sound like democracy because most people don’t like being told what to do. In America, we’ve institutionalized the notion that people don’t like being told what to do, so bald-faced authoritarianism is a non-starter.

We Don’t Need No Stinking Authoritarians

(Apologies to the Man in the Gold Sombrero from John Huston’s 1948 film The Treasure of the Sierra Madre.)

It started in England with the Magna Carta, in which the English nobles told King John “enough is enough.”

Yeah, King John is the same guy as the “Prince John” who was cast as the arch-enemy of fictional hero Robin Hood. See, we don’t like authoritarians, and generally cast them as the villains in our favorite stories.

Not wanting to be told what to do was imported to North America by the English colonists, who extended the concept (eventually) to everyone regardless of socio-economic status. From there, it was picked up by the French revolutionaries, then spread throughout Europe and parts East.

So, generally, nobody wants authoritarians telling them what to do, which is why they have to point guns at us to get us to do it.

The fact that most people would simultaneously like to be the authoritarian pointing the gun and doing the telling, and a fair fraction (probably about 25%) aren’t smart enough to see the incongruity involved, gives fascist populists a ready supply of people willing to hold the guns. Nazi Germany worked (for a while) because of this phenomenon. With a population North of 60 million, those statistics gave Hitler some 15 million gun holders to work with.

In the modern U.S.A., with a population over 300 million, the same statistical analysis gives modern fascists 75 million potential recruits. And, they’re walking around with more than their fair share of the guns!

Luckily, the rest of us have guns, too.

More importantly, we all have votes.

So, what’s an American who really doesn’t want any authoritarian telling them what to do … to do?

The first thing to do is open your eyes to the flim-flim represented by the Left/Right dichotomy. As long as you buy that drivel, you’ll never see what’s really going on. It’s set up as a sporting event where you’re required to back one of two teams: the Reds or the Blues.

Either one you pick, you’ll end up being told what to do by either the Red-team authoritarians or the Blue-team authoritarians. Because it’s treated as a sporting event, the object is to win, and there’s nothing at stake beyond winning. There isn’t even a trophy!

The next thing to do is look for people who would like to help, but don’t actually want to tell anyone what to do. When you find them, talk them into running for office.

Since you’ve picked on people who don’t really want to tell other people what to do, you’ll have to promise you won’t make them do it forever. After a while, you promise, you’ll let them off the hook so they can go do something else. That means putting term limits on elected officials.

The authoritarians, who get their jollies by telling other people what to do, won’t like that. The ones who just want to help out will be happy they can do their part for a while, then go home.

Then, you vote for those (small-L) libertarians.

POTUS and the Peter Principle

Will Rogers & Wiley Post
In 1927, Will Rogers wrote: “I never met a man I didn’t like.” Here he is (on left) posing with aviator Wiley Post before their ill-fated flying exploration of Alaska. Everett Historical/Shutterstock

11 July 2018 – Please bear with me while I, once again, invert the standard news-story pyramid by presenting a great whacking pile of (hopfully entertaining) detail that leads eventually to the point of this column. If you’re too impatient to read it to the end, leave now to check out the latest POTUS rant on Twitter.

Unlike Will Rogers, who famously wrote, “I never met a man I didn’t like,” I’ve run across a whole slew of folks I didn’t like, to the point of being marginally misanthropic.

I’ve made friends with all kinds of people, from murderers to millionaires, but there are a few types that I just can’t abide. Top of that list is people that think they’re smarter than everybody else, and want you to acknowledge it.

I’m telling you this because I’m trying to be honest about why I’ve never been able to abide two recent Presidents: William Jefferson Clinton (#42) and Donald J. Trump (#45). Having been forced to observe their antics over an extended period, I’m pleased to report that they’ve both proved to be among the most corrupt individuals to occupy the Oval Office in recent memory.

I dislike them because they both show that same, smarmy self-satisfied smile when contemplating their own greatness.

Tricky Dick Nixon (#37) was also a world-class scumbag, but he never triggered the same automatic revulsion. That is because, instead of always looking self satisfied, he always looked scared. He was smart enough to recognize that he was walking a tightrope and, if he stayed on it long enough, he eventually would fall off.

And, he did.

I had no reason for disliking #37 until the mid-1960s, when, as a college freshman, I researched a paper for a history class that happened to involve digging into the McCarthy hearings of the early 1950s. Seeing the future #37’s activities in that period helped me form an extremely unflattering picture of his character, which a decade later proved accurate.

During those years in between I had some knock-down, drag-out arguments with my rabid-Nixon-fan grandmother. I hope I had the self control never to have said “I told you so” after Nixon’s fall. She was a nice lady and a wonderful grandma, and wouldn’t have deserved it.

As Abraham Lincoln (#16) famously said: “You can fool all the people some of the time, and some of the people all the time, but you cannot fool all the people all the time.”

Since #45 came on my radar many decades ago, I’ve been trying to figure out what, exactly, is wrong with his brain. At first, when he was a real-estate developer, I just figured he had bad taste and was infantile. That made him easy to dismiss, so I did just that.

Later, he became a reality-TV star. His show, The Apprentice, made it instantly clear that he knew absolutely nothing about running a business.

No wonder his companies went bankrupt. Again, and again, and again….

I’ve known scads of corporate CEOs over the years. During the quarter century I spent covering the testing business as a journalist, I got to spend time with most of the corporate leaders of the world’s major electronics manufacturing companies. Unsurprisingly, the successful ones followed the best practices that I learned in MBA school.

Some of the CEOs I got to know were goofballs. Most, however, were absolutely brilliant. The successful ones all had certain things in common.

Chief among the characteristics of successful corporate executives is that they make the people around them happy to work for them. They make others feel comfortable, empowered, and enthusiastically willing to cooperate to make the CEO’s vision manifest.

Even Commendatore Ferrari, who I’ve heard was Hell to work for and Machiavellian in interpersonal relationships, made underlings glad to have known him. I’ve noticed that ‘most everybody who’s ever worked for Ferrari has become a Ferrari fan for life.

As far as I can determine, nobody ever sued him.

That’s not the impression I got of Donald Trump, the corporate CEO. He seemed to revel in conflict, making those around him feel like dog pooh.

Apparently, everyone who’s ever dealt with him has wanted to sue him.

That worked out fine, however, for Donald Trump, the reality-TV star. So-called “reality” TV shows generally survive by presenting conflict. The more conflict the better. Everybody always seems to be fighting with everybody else, and the winners appear to be those who consistently bully their opponents into feeling like dog pooh.

I see a pattern here.

The inescapable conclusion is that Donald Trump was never a successful corporate executive, but succeeded enormously playing one on TV.

Another characteristic I should mention of reality TV shows is that they’re unscripted. The idea seems to be that nobody knows what’s going to happen next, including the cast.

That leaves off the necessity for reality-TV stars to learn lines. Actual movie stars and stage actors have to learn lines of dialog. Stories are tightly scripted so that they conform to Aristotle’s recommendations for how to write a successful plot.

Having written a handful of traditional motion-picture scripts as well as having produced a few reality-TV episodes, I know the difference. Following Aristotle’s dicta gives you the ability to communicate, and sometimes even teach, something to your audience. The formula reality-TV show, on the other hand, goes nowhere. Everybody (including the audience) ends up exactly where they started, ready to start the same stupid arguments over and over again ad nauseam.

Apparently, reality-TV audiences don’t want to actually learn anything. They’re more focused on ranting and raving.

Later on, following a long tradition among theater, film and TV stars, #45 became a politician.

At first, I listened to what he said. That led me to think he was a Nazi demagogue. Then, I thought maybe he was some kind of petty tyrant, like Mussolini. (I never considered him competent enough to match Hitler.)

Eventually, I realized that it never makes any sense to listen to what #45 says because he lies. That makes anything he says irrelevant.

FIRST PRINCIPAL: If you catch somebody lying to you, stop believing what they say.

So, it’s all bullshit. You can’t draw any conclusion from it. If he says something obviously racist (for example), you can’t conclude that he’s a racist. If he says something that sounds stupid, you can’t conclude he’s stupid, either. It just means he’s said something that sounds stupid.

Piling up this whole load of B.S., then applying Occam’s Razor, leads to the conclusion that #45 is still simply a reality-TV star. His current TV show is titled The Trump Administration. Its supporting characters are U.S. senators and representatives, executive-branch bureaucrats, news-media personalities, and foreign “dignitaries.” Some in that last category (such as Justin Trudeau and Emmanuel Macron) are reluctant conscripts into the cast, and some (such as Vladimir Putin and Kim Jong-un) gleefully play their parts, but all are bit players in #45’s reality TV show.

Oh, yeah. The largest group of bit players in The Trump Administration is every man, woman, child and jackass on the planet. All are, in true reality-TV style, going exactly nowhere as long as the show lasts.

Politicians have always been showmen. Of the Founding Fathers, the one who stands out for never coming close to becoming President was Benjamin Franklin. Franklin was a lot of things, and did a lot of things extremely well. But, he was never really a P.T.-Barnum-like showman.

Really successful politicians, such as Abraham Lincoln, Franklin Roosevelt (#32), Bill Clinton, and Ronald Reagan (#40) were showmen. They could wow the heck out of an audience. They could also remember their lines!

That brings us, as promised, to Donald Trump and the Peter Principle.

Recognizing the close relationship between Presidential success and showmanship gives some idea about why #45 is having so much trouble making a go of being President.

Before I dig into that, however, I need to point out a few things that #45 likes to claim as successes that actually aren’t:

  • The 2016 election was not really a win for Donald Trump. Hillary Clinton was such an unpopular candidate that she decisively lost on her own (de)merits. God knows why she was ever the Democratic Party candidate at all. Anybody could have beaten her. If Donald Trump hadn’t been available, Elmer Fudd could have won!
  • The current economic expansion has absolutely nothing to do with Trump policies. I predicted it back in 2009, long before anybody (with the possible exception of Vladimir Putin, who apparently engineered it) thought Trump had a chance of winning the Presidency. My prediction was based on applying chaos theory to historical data. It was simply time for an economic expansion. The only effect Trump can have on the economy is to screw it up. Being trained as an economist (You did know that, didn’t you?), #45 is unlikely to screw up so badly that he derails the expansion.
  • While #45 likes to claim a win on North Korean denuclearization, the Nobel Peace Prize is on hold while evidence piles up that Kim Jong-un was pulling the wool over Trump’s eyes at the summit.

Finally, we move on to the Peter Principle.

In 1969 Canadian writer Raymond Hull co-wrote a satirical book entitled The Peter Principle with Laurence J. Peter. It was based on research Peter had done on organizational behavior.

Peter was (he died at age 70 in 1990) not a management consultant or a behavioral psychologist. He was an Associate Professor of Education at the University of Southern California. He was also Director of the Evelyn Frieden Centre for Prescriptive Teaching at USC, and Coordinator of Programs for Emotionally Disturbed Children.

The Peter principle states: “In a hierarchy every employee tends to rise to his level of incompetence.”

Horrifying to corporate managers, the book went on to provide real examples and lucid explanations to show the principle’s validity. It works as satire only because it leaves the reader with a choice either to laugh or to cry.

See last week’s discussion of why academic literature is exactly the wrong form with which to explore really tough philosophical questions in an innovative way.

Let’s be clear: I’m convinced that the Peter principle is God’s Own Truth! I’ve seen dozens of examples that confirm it, and no counter examples.

It’s another proof that Mommy Nature has a sense of humor. Anyone who disputes that has, philosophically speaking, a piece of paper taped to the back of his (or her) shirt with the words “Kick Me!” written on it.

A quick perusal of the Wikipedia entry on the Peter Principle elucidates: “An employee is promoted based on their success in previous jobs until they reach a level at which they are no longer competent, as skills in one job do not necessarily translate to another. … If the promoted person lacks the skills required for their new role, then they will be incompetent at their new level, and so they will not be promoted again.”

I leave it as an exercise for the reader (and the media) to find the numerous examples where #45, as a successful reality-TV star, has the skills he needed to be promoted to President, but not those needed to be competent in the job.