Robots Revisited

Engineer with SCARA robots
Engineer using monitoring system software to check and control SCARA welding robots in a digital manufacturing operation. PopTika/Shutterstock

12 December 2018 – I was wondering what to talk about in this week’s blog posting, when an article bearing an interesting-sounding headline crossed my desk. The article, written by Simone Stolzoff of Quartz Media was published last Monday (12/3/2018) by the World Economic Forum (WEF) under the title “Here are the countries most likely to replace you with a robot.”

I generally look askance at organizations with grandiose names that include the word “World,” figuring that they likely are long on megalomania and short on substance. Further, this one lists the inimitable (thank God there’s only one!) Al Gore on its Board of Trustees.

On the other hand, David Rubenstein is also on the WEF board. Rubenstein usually seems to have his head screwed on straight, so that’s a positive sign for the organization. Therefore, I figured the article might be worth reading and should be judged on its own merits.

The main content is summarized in two bar graphs. The first lists the ratio of robots to thousands of manufacturing workers in various countries. The highest scores go to South Korea and Singapore. In fact, three of the top four are Far Eastern countries. The United States comes in around number seven.Figure 1

The second applies a correction to the graphed data to reorder the list by taking into account the countries’ relative wealth. There, the United States comes in dead last among the sixteen countries listed. East Asian countries account for all of the top five.

Figure 2The take-home-lesson from the article is conveniently stated in its final paragraph:

The upshot of all of this is relatively straightforward. When taking wages into account, Asian countries far outpace their western counterparts. If robots are the future of manufacturing, American and European countries have some catching up to do to stay competitive.

This article, of course, got me started thinking about automation and how manufacturers choose to adopt it. It’s a subject that was a major theme throughout my tenure as Chief Editor of Test & Measurement World and constituted the bulk of my work at Control Engineering.

The graphs certainly support the conclusions expressed in the cited paragraph’s first two sentences. The third sentence, however, is problematical.

That ultimate conclusion is based on accepting that “robots are the future of manufacturing.” Absolute assertions like that are always dangerous. Seldom is anything so all-or-nothing.

Predicting the future is epistemological suicide. Whenever I hear such bald-faced statements I recall Jim Morrison’s prescient statement: “The future’s uncertain and the end is always near.”

The line was prescient because a little over a year after the song’s release, Morrison was dead at age twenty seven, thereby fulfilling the slogan expressed by John Derek’s “Nick Romano” character in Nicholas Ray’s 1949 film Knock on Any Door: “Live fast, die young, and leave a good-looking corpse.”

Anyway, predictions like “robots are the future of manufacturing” are generally suspect because, in the chaotic Universe in which we live, the future is inherently unpredictable.

If you want to say something practically guaranteed to be wrong, predict the future!

I’d like to offer an alternate explanation for the data presented in the WEF graphs. It’s based on my belief that American Culture usually gets things right in the long run.

Yes, that’s the long run in which economist John Maynard Keynes pointed out that we’re all dead.

My belief in the ultimate vindication of American trends is based, not on national pride or jingoism, but on historical precedents. Countries that have bucked American trends often start out strong, but ultimately fade.

An obvious example is trendy Japanese management techniques based on Druckerian principles that were so much in vogue during the last half of the twentieth century. Folks imagined such techniques were going to drive the Japanese economy to pre-eminence in the world. Management consultants touted such principles as the future for corporate governance without noticing that while they were great for middle management, they were useless for strategic planning.

Japanese manufacturers beat the crap out of U.S. industry for a while, but eventually their economy fell into a prolonged recession characterized by economic stagnation and disinflation so severe that even negative interest rates couldn’t restart it.

Similar examples abound, which is why our little country with its relatively minuscule population (4.3% of the world’s) has by far the biggest GDP in the world. China, with more than four times the population, grosses less than a third of what we do.

So, if robotic adoption is the future of manufacturing, why are we so far behind? Assuming we actually do know what we’re doing, as past performance would suggest, the answer must be that the others are getting it wrong. Their faith in robotics as a driver of manufacturing productivity may be misplaced.

How could that be? What could be wrong with relying on technological advancement as the driver of productivity?

Manufacturing productivity is calculated on the basis of stuff produced (as measured by its total value in dollars) divided by the number of worker-hours needed to produce it. That should tell you something about what it takes to produce stuff. It’s all about human worker involvement.

Folks who think robots automatically increase productivity are fixating on the denominator in the productivity calculation. Making even the same amount of stuff while reducing the worker-hours needed to produce it should drive productivity up fast. That’s basic number theory. Yet, while manufacturing has been rapidly introducing all kinds of automation over the last few decades, productivity has stagnated.

We need to look for a different explanation.

It just might be that robotic adoption is another example of too much of a good thing. It might be that reliance on technology could prove to be less effective than something about the people making up the work force.

I’m suggesting that because I’ve been led to believe that work forces in the Far Eastern developing economies are less skillful, may have lower expectations, and are more tolerant of authoritarian governments.

Why would those traits make a difference? I’ll take them one at a time to suggest how they might.

The impression that Far Eastern populations are less skillful is not easy to demonstrate. Nobody who’s dealt with people of Asian extraction in either an educational or work-force setting would ever imagine they are at all deficient in either intelligence or motivation. On the other hand, as emerging or developing economies those countries are likely more dependent on workers newly recruited from rural, agrarian settings, who are likely less acclimated to manufacturing and industrial environments. On this basis, one may posit that the available workers may prove less skillful in a manufacturing setting.

It’s a weak argument, but it exists.

The idea that people making up Far-Eastern work forces have lower expectations than those in more developed economies is on firmer footing. Workers in Canada, the U.S. and Europe have very high expectations for how they should be treated. Wages are higher. Benefits are more generous. Upward mobility perceptions are ingrained in the cultures.

For developing economies, not so much.

Then, we come to tolerance of authoritarian regimes. Tolerance of authoritarianism goes hand-in-hand with tolerance for the usual authoritarian vices of graft, lack of personal freedom and social immobility. Only those believing populist political propaganda think differently (which is the danger of populism).

What’s all this got to do with manufacturing productivity?

Lack of skill, low expectations and patience under authority are not conducive to high productivity. People are productive when they work hard. People work hard when they are incentivized. They are incentivized to work when they believe that working harder will make their lives better. It’s not hard to grasp!

Installing robots in a plant won’t by itself lead human workers to believe that working harder will make their lives better. If anything, it’ll do the opposite. They’ll start worrying that their lives are about to take a turn for the worse.

Maybe that has something to do with why increased automation has failed to increase productivity.

Computers Are Revolting!

Will Computers Revolt? cover
Charles Simon’s Will Computers Revolt? looks at the future of interactions between artificial intelligence and the human race.

14 November 2018 – I just couldn’t resist the double meaning allowed by the title for this blog posting. It’s all I could think of when reading the title of Charles Simon’s new book, Will Computers Revolt? Preparing for the Future of Artificial Intelligence.

On one hand, yes, computers are revolting. Yesterday my wife and I spent two hours trying to figure out how to activate our Netflix account on my new laptop. We ended up having to change the email address and password associated with the account. And, we aren’t done yet! The nice lady at Netflix sadly informed me that in thirty days, their automated system would insist that we re-log-into the account on both devices due to the change.

That’s revolting!

On the other hand, the uprising has already begun. Computers are revolting in the sense that they’re taking power to run our lives.

We used to buy stuff just by picking it off the shelf, then walking up to the check-out counter and handing over a few pieces of green paper. The only thing that held up the process was counting out the change.

Later, when credit cards first reared their ugly heads, we had to wait a few minutes for the salesperson to fill out a sales form, then run our credit cards through the machine. It was all manual. No computers involved. It took little time once you learned how to do it, and, more importantly, the process was pretty much the same everywhere and never changed, so once you learned it, you’d learned it “forever.”

Not no more! How much time do you, I, and everyone else waste navigating the multiple pages we have to walk through just to pay for anything with a credit or debit card today?

Even worse, every store has different software using different screens to ask different questions. So, we can’t develop a habitual routine for the process. It’s different every time!

Not long ago the banks issuing my debit-card accounts switched to those %^&^ things with the chips. I always forget to put the thing in the slot instead of swiping the card across the magnetic-stripe reader. When that happens we have to start the process all over, wasting even more time.

The computers have taken over, so now we have to do what they tell us to do.

Now we know who’ll be first against the wall when the revolution comes. It’s already here and the first against the wall is us!

Golem Literature in Perspective

But seriously folks, Simon’s book is the latest in a long tradition of works by thinkers fascinated by the idea that someone could create an artifice that would pass for a human. Perhaps the earliest, and certainly the most iconic, is the golem stories from Jewish folklore. I suspect (on no authority, whatsoever, but it does seem likely) that the idea of a golem appeared about the time when human sculptors started making statues in realistic human form. That was very early, indeed!

A golem is, for those who aren’t familiar with the term or willing to follow the link provided above to learn about it, an artificial creature fashioned by a human that is effectively what we call a “robot.” The folkloric golems were made of clay or (sometimes) wood because those were the best materials available at the time that the stories’ authors’ could have their artists work with. A well-known golem story is Carlo Collodi’s The Adventures of Pinocchio.

By the sixth century BCE, Greek sculptors had begun to produce lifelike statues. The myth of Pygmalion and Galatea appeared in a pseudo-historical work by Philostephanus Cyrenaeus in the third century BCE. Pygmalion was a sculptor who made a statue representing his ideal woman, then fell in love with it. Aphrodite granted his prayer for a wife exactly like the statue by bringing the statue to life. The wife’s name was Galatea.

The Talmud points out that Adam started out as a golem. Like Galatea, Adam was brought to life when the Hebrew God Yahweh gave him a soul.

These golem examples emphasize the idea that humans, no matter how holy or wise, cannot give their creations a soul. The best they can do is to create automatons.

Simon effectively begs to differ. He spends the first quarter of his text laying out the case that it is possible, and indeed inevitable, that automated control systems displaying artificial general intelligence (AGI) capable of thinking at or (eventually) well above human capacity will appear. He spends the next half of his text showing how such AGI systems could be created and making the case that they will eventually exhibit functionality indistinguishable from consciousness. He devotes the rest of his text to speculating about how we, as human beings, will likely interact with such hyperintelligent machines.

Spoiler Alert

Simon’s answer to the question posed by his title is a sort-of “yes.” He feels AGIs will inevitably displace humans as the most intelligent beings on our planet, but won’t exactly “revolt” at any point.

“The conclusion,” he says, “is that the paths of AGIs and humanity will diverge to such an extent that there will be no close relationship between humans and our silicon counterparts.”

There won’t be any violent conflict because robotic needs are sufficiently dissimilar to ours that there won’t be any competition for scarce resources, which is what leads to conflict between groups (including between species).

Robots, he posits, are unlikely to care enough about us to revolt. There will be no Terminator robots seeking to exterminate us because they won’t see us as enough of a threat to bother with. They’re more likely to view us much the way we view squirrels and birds: pleasant fixtures of the natural world.

They won’t, of course, tolerate any individual humans who make trouble for them the same way we wouldn’t tolerate a rabid coyote. But, otherwise, so what?

So, the !!!! What?

The main value of Simon’s book is not in its ultimate conclusion. That’s basically informed opinion. Rather, its value lies in the voluminous detail he provides in getting to that conclusion.

He spends the first quarter of his text detailing exactly what he means by AGI. What functions are needed to make it manifest? How will we know when it rears its head (ugly or not, as a matter of taste)? How will a conscious, self-aware AGI system act?

A critical point Simon makes in this section is the assertion that AGI will arise first in autonomous mobile robots. I thoroughly agree for pretty much the same reasons he puts forth.

I first started seriously speculating about machine intelligence back in the middle of the twentieth century. I never got too far – certainly not as far as Simon gets in this volume – but pretty much the first thing I actually did realize was that it was impossible to develop any kind of machine with any recognizable intelligence unless its main feature was having a mobile body.

Developing any AGI feature requires the machine to have a mobile body. It has to take responsibility not only for deciding how to move itself about in space, but figuring out why. Why would it, for example, rather be over there, rather than to just stay here? Note that biological intelligence arose in animals, not in plants!

Simultaneously with reading Simon’s book, I was re-reading Robert A. Heinlein’s 1966 novel The Moon is a Harsh Mistress, which is one of innumerable fiction works whose plot hangs on actions of a superintelligent sentient computer. I found it interesting to compare Heinlein’s early fictional account with Simon’s much more informed discussion.

Heinlein sidesteps the mobile-body requirement by making his AGI arise in a computer tasked with operating the entire infrastructure of the first permanent human colony on the Moon (more accurately in the Moon, since Heinlein’s troglodytes burrowed through caves and tunnels, coming up to the surface only reluctantly when circumstances forced them to). He also avoids trying to imagine the AGI’s inner workings, by glossing over with the 1950s technology he was most familiar with.

In his rather longish second section, Simon leads his reader through a thought experiment speculating about what components an AGI system would need to have for its intelligence to develop. What sorts of circuitry might be needed, and how might it be realized? This section might be fascinating for those wanting to develop hardware and software to support AGI. For those of us watching from our armchairs on the outside, though, not so much.

Altogether, Charles Simon’s Will Computers Revolt? is an important book that’s fairly easy to read (or, at least as easy as any book this technical can be) and accessible to a wide range of people interested in the future of robotics and artificial intelligence. It is not the last word on this fast-developing field by any means. It is, however, a starting point for the necessary debate over how we should view the subject. Do we have anything to fear? Do we need to think about any regulations? Is there anything to regulate and would any such regulations be effective?