The Dead-Cat Bounce

Dead Cat Bounce
Chaotic market theory and basic control theory combine to explain equities markets’ dead-cat bounce phenomenon.

10 June 2020 – The title of this essay sounds like a new Argentinian dance craze, but it’s not. It’s a pattern of stock-price fluctuations that has been repeated over, and over, since folks have been tracking stock prices. It doesn’t get the attention it deserves because people who pretend that they have power (i.e., the People In Charge – PIC), and can wisely dispense it, don’t like things that show how little power they actually have. So, they ignore the heck out of them, thereby proving themselves dumb, as well as powerless.

There’s been a lot of blather in the news media recently about some hypothetical “V-shaped recovery,” which a lot of pundits, especially those of the Republican-Party persuasion (notably led by that master of misinformation, Donald Trump), want you to believe the U.S. economy is experiencing. In an attempt to prove their case, they point to the performance over approximately the past three months of all three major equity-market indices, those being the Dow-Jones Industrial Average (DJIA), the Standard and Poor’s 500-Stock Composite Index (S&P), and the National Association of Securities Dealers Automated Quotations index (NASDAQ),. Those three indices do tell a consistent story, but it’s not the one the V-shaped-recovery fans want you to believe. The story is actually much more complicated. It’s what’s called the dead-cat bounce.

To understand the dead-cat bounce that has been going on since the U.S. equities market crashed in March, you have to understand what I was driving at in this space on 18 March 2020. That was about the time the market bloodbath hit bottom. By the way, I’d been mostly out of the market, and into cash, for several months at that point. I could see that something evil was bound to happen in the near future. I just didn’t know what it would be. It turned out to be a pandemic coming out of the blue.

In that 18 March essay, I spent a whole lot of space developing the chaotic-market theory, which visualizes markets as having an equilibrium value based on classical efficient-market theory, with a free-roaming chaotic component riding on it. The chaotic component arises as millions of investors jostle to control prices of thousands of equity instruments (stocks). One of the first things those of us who have been responsible for designing and building feedback control systems run into is a little phenomenon called pilot-involved oscillation (PIO), named after an instability all pilots have to deal with when learning to land an airplane. PIO arises from the inescapable fact that feedback response comes some time after the system moves off equilibrium. Obviously, the response can’t come before the movement, it has to come after. That’s why they call it a “response!” That time lag is what causes the PIO.

A feedback-controlled system’s behavior follows what’s called a inhomogeneous time-dependent linear differential equation. Let me break that name down a bit. The “inhomogeneous” part just means there is something driving the system. In the case of equities markets, that’s the underlying economy setting the equilibrium in accordance with Adam Smith’s supply and demand. The “time-dependent” part just means that things change over time. As Jim Morrison said: “The future’s uncertain and the end is always near.” A “linear differential equation” means that what happens next depends on what happened before, and the rate at which things are changing, now. Without going into the applied mathematics of finding a solution, I’ll just skip to the end, and tell you that there’s only one solution: the dratted things oscillate. That is, they go up and down, always overshooting and undershooting the equilibrium point.

Do you see the connection, now?

That solution is called a damped harmonic oscillator, which simply means that the thing’s overshooting and undershooting follows a regular sinusoidal (you’ll have to look that one up, yourself) pattern, but it dies out over time. The rate at which the oscillation dies out is controlled by something called the damping ratio, which can take on any value from zero to infinity. Zero damping means the oscillation doesn’t die out. A damping ratio exactly equal to one means the system over- or undershoots once, then comes back to its equilibrium value. A damping ratio much over one makes the system respond sluggishly, and not oscillate at all.

Now, with that explanation in mind, look at the market behavior depicted in the graph above. The graph starts at the beginning of March 2020. Investors started to realize that the pandemic was going to trash the U.S. economy around mid-February, so you see that I’ve cut off some of the start of the crash that happened before 1 March. By 1 March, stock prices were falling like a stone until 23 March. That’s when the dead cat hit the pavement, and bounced. It bounced too high and, around 27 March, it started falling back down, only to undershoot again. Around 2 April, it bottomed and started back up, again. Looking at these movements quantitatively, we can see the clear pattern of a damped oscillation with a period of about 12 days, and a damping ratio of between 0.2 and 0.4.

To bring out the underlying pattern, I’ve filtered the data by averaging over three days for each point in the data set to get the smoother red line. The three-day filter (called a Butterworth filter, by the way) does little to suppress the slower 12-day oscillations, or the even slower smack from the pandemic’s economic hit. I does, however, pretty well filter out the daily noise from the fast-moving day-trading fluctuations.

Clearly, we are in a recovery. There’s no doubt about that! The economy is coming back to life after being practically shut down for a short period of time. The initial shock from the pandemic is largely over. Look for a gradual return to the three-to-five-percent-per-year long-term growth rate we’ve seen over the century-and-a-quarter history of the DJIA.

Fiat Money and the Problem of Foreign Exchange Rates

Money
Money exists as metadata representing equal amounts of credit and debit.

26 February 2020 – This essay is a transcription of a paper I wrote last week as part of my studies for a Doctor of Business Administration (DBA) at Keiser University.

Developing a theory that quantitatively determines the rate of exchange between two fiat currencies has been a problem since the Song dynasty, when China’s Jurchen neighbors to the north figured out that they could emulate China’s Tang-dynasty innovation of printing fiat money on paper (Onge, 2017). With two currencies to exchange, some exchange rate was needed. This essay looks to Song-Dynasty economic history to find reasons why foreign exchange (forex) rates are so notoriously hard to predict. The analytical portion starts from the proposition that money itself is neutral (Patinkin & Steiger, 1989), and incorporates recently introduced ideas about money (de Soto, 2000; Masi, 2019), and concludes in favor of the interest rate approach for forex-rate prediction (Scott Hacker, Karlsson, & Månsson, 2012).

Song-Dynasty Economics

After the introduction of paper money, the Song Chinese quickly ran into the problem of inflation due to activities of rent seekers (Onge, 2017). Rent-seeking is an economics term that refers to attempts to garner income from non-productive activities, and has been around since at least the early days of agriculture (West, 2008). The Greek poet Hesiod complained about it in what has been called the first economics text, Works and Days, in which he said, “It is from work that men are rich in flocks and wealthy … if you work, it will readily come about that a workshy man will envy you as you become wealthy” (p. 46).

Repeated catastrophes arose for the Song Chinese after socialist economist Wang Anshi, prime minister from 1069 to 1076, taught officials that they could float government expenditures by simply cranking up their printing presses to flood the economy with fiat currency (Onge, 2017). Inflation exploded while productivity collapsed. The Jurchens took advantage of the situation by conquering the northern part of China’s empire. After they, too, destroyed their economy by succumbing to Wang’s bad advice, the Mongols came from the west to take over everything and confiscate the remaining wealth of the former Chinese Empire to fund their conquest of Eurasia.

Neutrality of Money

The proposition that money is neutral comes from a comment by John Stuart Mill, who, in 1871, wrote that “The relations of commodities to one another remain unaltered by money” (as cited in Patinkin & Steiger, 1989, p. 239). In other words, if a herdsman pays a farmer 50 cows as bride price for one of the farmer’s daughters, it makes no difference whether those 50 cows are worth 100 gold shekels, or 1,000, the wife is still worth 50 cows! One must always keep this proposition in mind when thinking about foreign exchange rates, and money in general. (Apologies for using a misogynistic example treating women as property, but we’re trying to drive home the difference between a thing and its monetary value.)

Another concept to keep in mind is Hernando de Soto’s (2000) epiphany that a house is just a shelter from the weather until it is secured by a property title. He envisioned that such things as titles inhabit what amounts to a separate universe parallel to the physical universe where the house resides. Borrowing a term from philosophy, one might call this a metaphysical universe made up of metadata that describes objects in the physical universe. de Soto’s idea was that existence of the property-title metadata turns the house into wealth that can become capital through the agency of beneficial ownership.

If one has beneficial ownership of a property title, one can encumber it by, for example, using it to secure a loan. One can then invest the funds derived from that loan into increased productive capacity of a business–back in the physical universe. Thus, the physical house is just an object, whereas the property title is capital (de Soto, 2000). It is the metaphysical capital that is transferable, not the physical property. In the transaction between the farmer and the herdsman above, what occurred was a swap between the two parties of de-Sotoan capital derived from beneficial ownership of the cattle and of the daughter, and it happened in the metaphysical universe.

What Is Money, Really?

Much of the confusion about forex rates arises from conflating capital and money. Masi (2019) speculated that money in circulation (e.g., M1) captures only half of what money really is. Borrowing concepts from both physics and double-entry bookkeeping, he equated money with a two-part conserved quantity he referred to as credit/debit. (Note that here the words “credit” and “debit” are not used strictly according to their bookkeeping definitions.) Credit arises in tandem with creation of an equal amount of debit. Thus, the net amount of money (equaling credit-minus-debit) is always the same: zero. A homeowner raising funds through a home-equity line of credit (HELOC) does not affect his or her total wealth. The transaction creates funds (credit) and debt (debit) in equal amounts. Similarly, a government putting money into circulation, whether by printing pieces of paper, or by making entries in a digital ledger, automatically increases the national debt.

Capital, on the other hand, arises, as de Soto (2000) explained, as metadata associated with property. The confusion comes from the fact that both capital and money are necessarily measured in the same units. While capital can increase through, say, building a house, or it can decrease by, for example, burning a house down, the amount of money (as credit/debit) can never change. It’s always a net zero.

The figure above shows how de Soto’s (2000) and Masi’s (2019) ideas combine. The cycle begins on the physical side with beneficial ownership of some property. On the metaphysical side, that beneficial ownership is represented by capital (i.e., property title). That capital can be used to secure a loan, which creates credit and debit in equal amounts. The beneficial owner is then free to invest the credit in beneficial ownership of a productive business back on the physical side. The business generates profits (e.g., inventory) that the owner retains as an increase in property.

The debit that was created along the way stays on the metaphysical side as an encumbrance on the total capital. The system is limited by the quantity of capital that can be encumbered, which limits the credit that can be created to fund continuing operations. The system grows through productivity of the business, which increases the property that can be represented by new capital, which can be encumbered by additional credit/debit creation, which can then fund more investment, and so forth. Note that the figure ignores, for simplicity, ongoing investment required to maintain the productive assets, and interest payments to service the debt.

Wang’s mismanagement strategy amounted to deficit spending–using a printing press to create credit/debit faster than the economy can generate profit to be turned into an increasing stock of capital (Onge, 2017). Eventually, the debt level rises to encumber the entire capital supply, at which point no new credit/debit can be created. Continued running of Wang’s printing press merely creates more fiat money to chase the same amount of goods: inflation. Thus, inflation arises from having the ratio of money creation divided by capital creation greater than one.

In Song China, investment collapsed due to emphasis on rent seeking, followed by collapsing productivity (Onge, 2017). Hyperinflation set in as the government cranked the printing presses just to cover national-debt service. Finally, hungry outsiders, seeing the situation, swooped in to seize the remaining productive assets. First it was the Jurchens, then the Mongols.

Forex and Hyperinflation

The Song Chinese quickly saw Wang’s mismanagement at work, and kicked him out of office (Onge, 2017). They, however, failed to correct the practices he’d introduced. Onge (2017) pointed out that China’s GDP per person at the start of the Song dynasty was greater than that of 21st-century Great Britain. Under Wang’s policies, decline set in around 1070–80, and GDP per person had fallen by 23% by 1120. Population growth changed to decline. Productivity cratered. Inflation turned to hyperinflation. The Jurchen, without the burden of Wang’s teachings, were slower to inflate their currency.

As Chinese inflation increased relative to that of the Jurchen, exchange rates between Jurchen and Chinese currencies changed rapidly. The Jurchen fiat currency became stronger relative to that of the Chinese. This tale illustrates how changes in forex rates follow relative inflation between currencies, and argues for using the interest rate approach to predict future equilibrium forex rates (Scott Hacker, et al., 2012).

Conclusion

Forex rates are free to fluctuate because money is neutral (Patinkin & Steiger, 1989). Viewing money as a conserved two-fluid metaphysical quantity (Masi, 2019) shows how a country’s supply of de-Sotoan capital constrains the money supply, and shows how an economy grows through profits from productive businesses (de Soto, 2000). It also explains inflation as an attempt to increase the money supply faster than the capital supply can grow. The mismatch of relative inflation affects equilibrium forex rates by increasing strength of one currency relative to another, and argues for the interest-rate approach to forex theory (Scott Hacker, et al., 2012).

References

de Soto, H. (2000). The mystery of capital. New York, NY: Basic Books.

Masi, C. G. (2019, June 19). The Fluidity of Money. [Web log post]. Retrieved from http://cgmblog.com/2019/06/19/the-fluidity-of-money/

Onge, P. S. T. (2017). How paper money led to the Mongol conquest: Money and the collapse of Song China. The Independent Review, 22(2), 223-243.

Patinkin, D., & Steiger, O. (1989). In search of the “veil of money” and the “neutrality of money”: A note on the origin of terms. Scandinavian Journal of Economics, 91(1), 131.

Scott Hacker, R., Karlsson, H. K., & Månsson, K. (2012). The relationship between exchange rates and interest rate differentials: A wavelet approach. World Economy, 35(9), 1162–1185.

West, M. L. [Ed.] (2008). Hesiod: Theogony and works and days. Oxford, UK; Oxford University Press.

The Chinese “Miracle”

Shanghai Skyline
Shanghai, China is the epicenter of the Chinese Miracle. Image by f11photo/Shutterstock

14 December 2019 – The following essay is a verbatim copy of one I recently posted to a Global Business discussion site in response to a link emailed to me by Dr. Tiffany Jordan of Keiser University.


Thank you, TJ, for sending along a link to Steve Sjuggerud’s documentary on Chinese development. History teaches us that 5,000 years ago, China was one of two (maybe three, if you count Central America) population centers (the other was Egypt) where folks independently invented civilization. You can’t go far wrong by betting on people that smart!

The second factor in this story is that one out of six human beings on this planet is Chinese. With that many really smart people let loose to work together, they’re bound to push the limits of economic development. The last time that happened anywhere was in the 18th century when steam technology was let loose among the newly liberated populations of England, North America, and Europe. The resulting Industrial Revolution was a similar game changer. People from the countryside flocked to the cities to make the most of revolutionary technology, and made vast piles of wealth in the process. Sound familiar?

So, what could go wrong? The known preference of the Chinese people for long power distance is what could go wrong (Hofstede, 1993). Since Qin Shi Huang patched together the Chinese Empire in 221 BCE (Shi, 2014), the country has had a nearly unbroken record of authoritarian rule, which is why, after all this time, they’re still stuck with “emerging nation” status. The latest period of lax central control started in the mid-1970s, when Mao Zedong lost control of his Marxist People’s Republic (PRC), and good things started happening in China.

China is home to two philosophies at opposing ends of the power-distance spectrum: Taoist egalitarianism and Confucian formality (Carnogurská, 2014). Taoists insist (among other things) on individual self-rule. Confucionists insist on respect for authority (Zhou, 2011). You can guess which philosophy Xi Jinping’s power-grabbing PRC favors! It is no accident that the slowing of China’s economic expansion immediately followed Xi’s re-institution of central authority. The stark contrast can be seen in the difference between the miracle on the Chinese mainland and the even-bigger miracle that has been playing out in Hong Kong.

I’m always ambivalent, however, about investing in the Chinese “miracle.” Back in the early 1990s I was asked to duplicate my success helping expand an American electronics publication into Europe by doing the same thing in China. With images from Tiananmen-Square events fresh in my mind, I declined. Unlike my corporate bosses, I just didn’t trust the PRC leadership to play nice. That corporation is now out of the publishing business! I’d done the same thing in the 1970s when I declined the last Shah of Iran’s invitation to take our Boston-based Physics Department to Tehran University–just before their revolution broke out. (Whew!)

China is not Iran, and Xi Jinping is not Mohammad Reza Shah. Pres. Xi likes leading the fastest-growing economy on the planet, but is facing his big test with current events in Hong Kong. Will he figure a way to defuse that uprising, or will his unenlightened cronies in Beijing push him into a disasterous reprise of Tiananmen-Square? I’m not jumping onto the Chinese bandwagon until I see the result.

References

Carnogurská, M. (2014). Xunzi, an ingeniously critical synthesist of Chinese philosophy of the pre-Qin period. Journal of Sino – Western Communications, 6(1), 3-25.

Hofstede, G. (1993). Cultural constraints in management theories. Executive, 7(1), 81–94.

Shi, J. (2014). Incorporating all for one: The first emperor’s tomb mound. Early China, 37(1), 359-391.

Zhou, H. (2011). Confucianism and the legalism: A model of the national strategy of governance in ancient China. Frontiers of Economics in China, 6(4), 616-637.

Making Successful Decisions

Project Inputs
External information about team attributes, group dynamics and organizational goals ultimately determine project success.

4 September 2019 – I’m in the early stages of a long-term research project for my Doctor of Business Administration (DBA) degree. Hopefully, this research will provide me with a dissertation project, but I don’t have to decide that for about a year. And, in the chaotic Universe in which we live a lot can, and will, happen in a year.

I might even learn something!

And, after learning something, I might end up changing the direction of my research. Then again, I might not. To again (as I did last week ) quote Winnie the Pooh: “You never can tell with bees!

No, this is not an appropriate forum for publishing academic research results. For that we need peer-reviewed scholarly journals. There are lots of them out there, and I plan on using them. Actually, if I’m gonna get the degree, I’m gonna have to use them!

This is, however, an appropriate forum for summarizing some of my research results for a wider audience, who might just have some passing interest in them. The questions I’m asking affect a whole lot of people. In fact, I dare say that they affect almost everyone. They certainly can affect everyone’s thinking as they approach teamwork at home and at work, as well as how they consider political candidates asking for their votes.

For example, a little over a year from now, you’re going to have the opportunity to vote for who you want running the United States Government’s Executive Branch as well as a few of the people you’ll hire (or re-hire) to run the Legislative Branch. Altogether, those guys form a fairly important decision-making team. A lot of folks have voiced disapprobation with how the people we’ve hired in the past have been doing those jobs. My research has implications for what questions you ask of the bozos who are going to be asking for your votes in the 2020 elections.

One of the likely candidates for President has shown in words and deeds over the past two years (actually over the past few decades, if you care to look that far into his past) that he likes to make decisions all by his lonesome. In other words, he likes to have a decision team numbering exactly one member: himself.

Those who have paid attention to this column (specifically the posting of 17 July) can easily compute the diversity score for a team like that. It’s exactly zero.

When looking at candidates for the Legislative Branch, you’ll likely encounter candidates who’re excessively proud to promise that they’ll consult that Presidential candidate’s whims regarding anything, and support whatever he tells them he wants. Folks who paid attention to that 17 July posting will recognize that attitude as one of the toxic group-dynamics phenomena that destroy a decision team’s diversity score. If we elect too many of them to Congress and we vote Bozo #1 back into the Presidency, we’ll end up with another four years of the effective diversity of the U.S. Government decision team being close to or exactly equal to zero.

Preliminary results from my research – looking at results published by other folks asking what diversity or lack thereof does to the results of projects they make decisions for – indicates that decision teams with zero effective diversity are dumber than a box of rocks. Nobody’s done the research needed to make that statement look anything like Universal Truth, but several researchers have looked at outcomes of a lot of projects. They’ve all found that more diverse teams do better.

Anyway, what this research project is all about is studying the effect of team-member diversity on decision-team success. For that to make sense, it’s important to define two things: diversity and success. Even more important is to make them measurable.

I’ve already posted about how to make both diversity and success measurable. On 17 July I posted a summary of how to quantify diversity. On 7 August I posted a summary of my research (so far) into quantifying project success as well. This week I’m posting a summary of how I plan to put it all together and finally get some answers about how diversity really affects project-development teams.

Methodology

What I’m hoping to do with this research is to validate three hypotheses. The main hypothesis is that diversity (as measured by the Gini-Simpson index outlined in the 17 July posting) correlates positively with project success (as measured by the critical success index outlined in the 7 August posting). A secondary hypothesis is that four toxic group-dynamic phenomena reduce a team’s ability to maximize project success. A third hypothesis is that there are additional unknown or unknowable factors that affect project success. The ultimate goal of this research is to estimate the relative importance of these factors as determinants of project success.

Understanding the methodology I plan to use begins with a description of the information flows within an archetypal development project. I then plan on conducting an online survey to gather data on real world projects in order to test the hypothesis that it is possible to determine a mathematical function that describes the relationship between diversity and project success, and to elucidate the shape of such a function if it exists. Finally, the data can help gauge the importance of group dynamics to team-decision quality.

The figure above schematically shows the information flows through a development project. External factors determine project attributes. Personal attributes, such as race, gender, and age combine with professional attributes, such as technical discipline (e.g., electronics or mechanical engineering) and work experience to determine raw team diversity. Those attributes combine with group dynamics to produce an effective team diversity. Effective diversity affects both project planning and project execution. Additional inputs from stakeholder goals and goals of the sponsoring enterprise also affect the project plans. Those plans, executed by the team, determine the results of project execution.

The proposed research will gather empirical data through an online survey of experienced project managers. Following the example of researchers van Riel, Semeijn, Hammedi, & Henseler (2011), I plan to invite members of the Project Management Institute (PMI) to complete an online survey form. Participants will be asked to provide information about two projects that they have been involved with in the past – one they consider to be successful and one that they consider less successful. This is to ensure that data collected includes a range of project outcomes.

There will be four parts to the survey. The first part will ask about the respondent and the organization sponsoring the project. The second will ask about the project team and especially probe the various dimensions of team diversity. The third will ask about goals expressed for the project both by stakeholders and the organization, and how well those goals were met. Finally, respondents will provide information about group dynamics that played out during project team meetings. Questions will be asked in a form similar to that used by van Riel, Semeijn, Hammedi, & Henseler (2011): Respondents will rate their agreement with statements on a five- or seven-step Likert scale.

The portions of the survey that will be of most importance will be the second and third parts. Those will provide data that can be aggregated into diversity and success indices. While privacy concerns will make masking identities of individuals, companies and projects important, it will be critical to preserve links between individual projects and data describing those project results.

This will allow creating a two-dimensional scatter plot with indices of team diversity and project success as independent and dependent variables respectively. Regression analysis of the scatter plot will reveal to what extent the data bear out the hypothesis that team diversity positively correlates with project success. Assuming this hypothesis is correct, analysis of deviations from the regression curve (n-way ANOVA) will reveal the importance of different group dynamics effects in reducing the quality of team decision making. Finally, I’ll need to do a residual analysis to gauge the importance of unknown factors and stochastic noise in the data.

Altogether this research will validate the three hypotheses listed above. It will also provide a standard methodology for researchers who wish to replicate the work in order to verify or extend it. Of course, validating the link between team diversity and decision-making success has broad implications for designing organizations for best performance in all arenas of human endeavor.

References

de Rond, M., & Miller, A. N. (2005). Publish or perish: Bane or boon of academic life? Journal of Management Inquiry, 14(4), 321-329.

van Riel, A., Semeijn, J., Hammedi, W., & Henseler, J. (2011). Technology-based service proposal screening and decision-making effectiveness. Management Decision, 49(5), 762-783.

Do the Math

Applied Math teacher
Throughout history, applied mathematics has been the key to human development. By Elnur/Shutterstock

31 July 2019 – Over the millennia that philosophers have been doing their philosophizing, a recurring theme has been the quest to come up with some simple definition of what sets humans apart from so-called “lower” animals. This is not just idle curiosity. From Aristotle on, folks have realized that understanding what makes us human is key to making the most of our humanity. If we don’t know who we are, how can we figure out how to be better?

In recent decades, however, it’s become clear that this is a fool’s errand. Such a definition of humanity doesn’t exist. Instead, what sets humans apart is a suite of characteristics, such as two eyes in the front of a head that’s set up on a stalk over a main torso, with two legs down below and a couple of arms on each side ending with wiggly fingers and opposable thumbs; a brain able to use sophisticated language; and so forth. Not every human has all of them (for example, I had a friend in Arizona who’d managed to lose his right arm and shoulder without losing his humanity) and a lot of non-humans have some of them (for example, chimpanzees use tools a lot). What marks humans as humans is having most of these characteristics, and what marks non-humans as not human is lacking a lot of them.

On the other hand, there is one thing that most humans are capable of that most non-humans aren’t: humans are capable of doing the math.

Yeah, crows can count past two. I hear that pigeons are good at pattern recognition. But, I’m talking about mathematical reasoning more sophisticated than counting past seven. That’s something most humans can do, and most other animals can’t.

Everybody has their mathematical limitations.Experience indicates that one’s mathematical limitations are mostly an issue of motivation. At some point, just about everybody decides that it’s just not worth putting in the effort needed to learn any more math than they already know.

That’s because learning math is hard. It’s the biggest learning challenge most of us ever face. Most of us give up long before reaching the limits of our innate ability to puzzle it out.

Luckily, there are some who are willing to push the limits, and master mathematical puzzles that no human has solved before. That’s lucky because without people like them, human progress would quickly stop.

Even better, those people are often willing – even anxious – to explain what they’ve puzzled out to the rest of us. For example, we have geometry because a bunch of Egyptians puzzled out how to design pyramids, stone temples and other stuff they wanted to build, then proudly explained to their peers exactly how to do it. We have double-entry accounting because folks in the Near East wanted to keep track of what they had, figured out how to do it, and taught others to help. We’ve got calculus because Sir Isaac Newton and a bunch of his buddies figured out how to predict what the visible planets would do next, then taught it to a bunch of physics students.

It’s what we like to call “Applied Mathematics,” and it’s responsible for most of the progress people have made since the days of stone knives and bear skins. Throughout history, we’ve all stood around scratching our heads about things we couldn’t make sense of until some bright guy (or gal) worked out the right mathematics and applied it to the problem. Then, suddenly what had been unintelligible became understandable.

These days, what I think is the bleeding edge of applied mathematics is nonlinear dynamics and chaos. Maybe there’s some fuzzy logic thrown into the mix, too. Most of the math tools needed to understand (as in “make mathematical models using”) these things is pretty well in hand. What we need to do is apply such tools to the problems that today vex us.

A case in point is the Gini-Simpson Diversity Index I described in this blog two weeks ago. That is a small brick in the wall of a structure that I hope will someday help us avoid making so many dumb choices. Last week I ran across another brick in a paper written by a couple of computer science professors at my old alma mater Rensselaer Polytechnic Institute (aka RPI, or as we used to call it when I was there as a graduate student, “the Tute”). This bit of intellectual flotsam describes a mathematical model the authors use to predict how political polarization evolves in the U.S. Congress.

Polarization is one of four (at my last count) toxic group-dynamics phenomena that make collaborative decision making fail. Basically, the best decisions are made by groups that work together to reach a consensus. We get crappy decisions when the group’s dynamics break down.

The RPI model is a nonlinear differential equation describing an aspect of the dynamics of decision-making teams. Specifically, it quantifies conditions that determine whether decision teams evolve toward consensus or polarization. We see today what happens when Congress evolves toward polarization. The authors’ research shows that prior to about 1980 Congress evolved toward consensus. Seeing this dynamic at work mathematically gives us a leg up on figuring out why, and maybe doing something about it.

I’m not going to go into the mathematical model the RPI paper presents. The study of nonlinear dynamical systems is far outside the editorial focus of this column. At this point, I’m not going to talk about solutions the paper might suggest for toxic U.S. Government polarization, either. The theory is not well enough developed yet to provide meaningful suggestions.

The purpose of this posting is to point out that application of sophisticated mathematics is necessary for solving society’s most intractable problems. As I said above, not everybody is ready and willing to become expert in using such tools. That’s not necessary. What I hope you’ll walk away with today is an appreciation of applied mathematics’ importance for societal development, and a willingness to support STEM (science, technology, engineering and mathematics) education throughout our school system. Finally, I hope you’ll encourage students who show an interest to learn the techniques and follow STEM careers.

Computing Diversity

Decision Team
Diversity of membership in decision-making teams leads to better outcomes. By Rawpixel.com/Shutterstock

17 July 2019 – It’s come to my attention that a whole lot of people don’t know how to calculate a diversity score, or even that such a thing exists! How can there be so much discussion of diversity and so little understanding of what the word means? In this post I hope to give you a peek behind the curtain, and maybe shed some light on what diversity actually is and how it is measured.

This topic is of particular interest to me at present because momentum is building to make a study of diversity in business-decision making the subject of my doctoral dissertation in Business Administration. Specifically, I’m looking at how decision-making teams (such as boards of directors) can benefit from membership diversity, and what can go wrong.

Estimating Diversity

The dictionary definition of diversity is: “the condition of having or being composed of differing elements.”

So, before we can quantify the diversity of any group, we’ve got to identify what makes different elements different. This, by the way, is all basic set theory. In different contexts what we mean by “different” may vary. When we’re talking about group decision making in a business context, it gets pretty complicated.

A group may be subdivided, or “stratified” along various dimensions. For example, a team of ten people sitting around a table trying to figure out what to do next about, say, a new product could be subdivided in various ways. One way to stratify such a group is by age. You’d have so many individuals in their 20’s, so many might be in their 30’s, and so forth up to the oldest group being aged 50 or more. Another (perhaps more useful) way to subdivide them is by specialty. There may be so many software engineers, so many hardware engineers, so many marketers, and so forth. These days stratifying teams by gender, ethnicity, educational level or political persuasion could be important. What counts as diversity depends on what the team is trying to decide.

The moral of this story is that a team might score high in diversity along one dimension and very poorly along another. I’m not going to say any more about diversity’s multidimensional nature in this essay, however. We have other fish to fry today.

For now, let’s assume a one-dimensional diversity index. What we pick for a dimension makes little difference to the mathematics we use. Let’s just imagine a medium-sized group of, say, ten individuals and stratify them according to the color of tee-shirts they happen to be wearing at the moment.

What the color of their tee-shirts could possibly mean for the group’s decisions about new-product development I can’t imagine, and probably wouldn’t care anyway. It does, however, give us a way to stratify the sample. Let’s say their shirt colors fall out as in Table 1. So, we’ve got five categories of team members stratified by tee-shirt color.Table 1: Tee-Shirt Colors

NOTE: The next bit is mathematically rigorous enough to give most people nosebleeds. You can skip over it if you want to, as I’m going to follow it with a more useful quick-and-dirty estimation method.

The Gini–Simpson diversity index, which I consider to be the most appropriate for evaluating diversity of decision-making teams, has a range of zero to one, with zero being “everybody’s the same” and one being “everybody’s different.” We start by asking: “What is the probability that two members picked at random have the same color tee shirt?”

If you’ve taken my statistical analysis course, you’ll likely loathe remembering that the probability of picking two things from a stratified data set, and having them both fall into the same category is:

Equation 1

Where λ is the probability we want, N is the number of categories (in this case 5), and P is the probability that, given the first pick falling into a certain category (i) the second pick will be in the same category. The superscript 2 just indicates that we’re taking members two at a time. Basically P is the number of members in category i divided by the total number of members in all categories. Thus, if the first pick has a blue tee-shirt, then P is 3/10 = 0.3.

This probability is high when diversity is low, and low when diversity is high. The Gini-Simpson index makes more intuitive sense by simply subtracting that probability from unity (1.0) to get something that is low when diversity is low, and high when diversity is high.

NOTE: Here’s where we stop with the fancy math.

Guesstimating Diversity

Veteran business managers (at least those not suffering from pathological levels of OCD) realize that the vast majority of business decisions – in fact most decisions in general – are not made after extensive detailed mathematical analysis like what I presented in the previous section. In fact, humans have an amazing capacity for making rapid decisions based on what’s called “fuzzy logic.”

Fuzzy logic recognizes that in many situations, precise details may be difficult or impossible to obtain, and may not make a significant difference to the decision outcome, anyway. For example, deciding whether to step out to cross a street could be based on calculations using precise measurements of an oncoming car’s speed, distance, braking capacity, and the probability that the driver will detect your presence in time to apply the brakes to avoid hitting you.

But, it’s usually not.

If we had to make the decision by the detailed mathematical analysis of physical measurements, we’d hardly ever get across the street. We can’t judge speed or distance accurately enough, and have no idea whether the driver is paying attention. We don’t, in general, make these measurements, then apply detailed calculations using Gallilean Transformations to decide if now is a safe time to cross.

No, we have, with experience over time, developed a “gut feel” for whether it’s safe. We use fuzzy categories of “far” and “near,” and “slow” or “fast.” Even the terms “safe” and “unsafe” have imprecise meanings, gradually shifting from one to the other as conditions change. For example “safe to cross” means something quite different on a dry, sunny day in summertime, than when the pavement has a slippery sheen of ice.

Group decision making has a similar fuzzy component. We know that the decision team we’ve got is the decision team we’re going to use. It makes no difference whether it’s diversity score is 4.9 or 5.2, what we’ve got is what we’re going to use. Maybe we could make a half-percent improvement in the odds of making the optimal decision by spending six months recruiting and training a blind Hispanic woman with an MBA to join the team, but are we going to do it? Nope!

We’ll take our chances with the possibly sub-optimal decision made by the team we already have in place.

Hopefully we’re not trying to work out laws affecting 175 million American women with a team consisting of 500 old white guys, but, historically, that’s the team we’ve had. No wonder we’ve got so many sub-optimal laws!

Anyway, we don’t usually need to do the detailed Gini-Simpson Diversity Index calculation to guesstimate how diverse our decision committee is. Let’s look at some examples whose diversity indexes are easy to calculate. That will help us develop a “gut feel” for diversity that’ll be useful in most situations.

So, let’s assume we look around our conference room and see six identical white guys and six identical white women. It’s pretty easy to work out that the team’s diversity index is 0.5. The only way to stratify that group is by gender, and the two strata are the same size. If our first pick happens to be a woman, then there’s a 50:50 chance that the second pick will be a woman, too. One minus that probability (0.5) equals 0.5.

Now, let’s assume we still have twelve team members, but eleven of them are men and there’s only one token woman. If your first pick is the woman, the probability of picking a woman again is 1/12 = 0.8. (The Gini-Simpson formula lets you pick the same member twice.) If, on the other hand, your first pick is a man, the probability that the second pick will also be a man is 11/12 = 0.92. I plugged all this into an online Gini-Simpson-Index calculator (‘cause I’m lazy) and it returned a value of 26%. That’s a whole lot worse.

Let’s see what happens when we maximize diversity by making everyone different. That means we end up stratifying the members into twelve segments. After picking one member, the odds of the second pick being identical are 1/12 = 0.8 for every segment. The online calculator now gives us a diversity index of 91.7%. That’s a whole lot better!

What Could Possibly Go Wrong?

There are two main ways to screw up group diversity: group-think and group-toxicity. These are actually closely related group-dynamic phenomena. Both lower the effective diversity.

Group-think occurs when members are too accommodating. That is, when members strive too hard to reach consensus. They look around to see what other members want to do, and agree to it without trying to come up with their own alternatives. This produces sub-optimal decisions because the group fails to consider all possible alternatives.

Toxic group dynamics occurs when one or more members dominate the conversation either by being more vocal or more numerous. Members with more reticent personalities fail to speak up, thus denying the group their input. Whenever a member fails to speak up, they lower the group’s effective diversity.

A third phenomenon that messes up decision making for  high-diversity teams is that when individual members are too insistent that their ideas are the best, groups often fail to reach consensus at all. At that point more diversity makes reaching consensus harder. That’s the problem facing both houses of the U.S. Congress at the time of this writing.

These phenomena are present to some extent in every group discussion. It’s up to group leadership to suppress them. In the end, creating an effective decision-making team requires two elements: diversity in team membership, and effective team leadership. Membership diversity provides the raw material for effective team decision making. Effective leadership mediates group dynamics to make it possible to maximize the team’s effective diversity.

The Free Press, and How You Get It

Free Press Image
The right to sit in a cafe, drinking coffee and reading newspapers is wasted unless that press is free! By Impact Photography/Shutterstock

10 July 2019 – ‘Way back in the late 1960s I spent an entire day as a news hawker. That is, I stood on street corners shouting things at passersby intended to induce them to by copies of a newspaper I was selling. The newspaper was something called The L.A. Free Press. It was produced and sold in Los Angeles, and the street corners I stood on had names like “West Hollywood Boulevard and Sunset.”

I’d recently transplanted from Boston, Massachusetts to the Los Angeles, California area and had never heard of The L.A. Free Press before. A small gang I’d been hanging out with that morning heard that I had a driver’s license on me, and knew that we could use it as collateral to get a great whacking stack of those newspapers to sell at a profit.

Seemed like a good idea at the time.

I initially thought the newspaper copies were somehow free for the taking (as so many local papers are today). I was quickly disabused of that idea because I got pretty decent money for buying copies of it at a low price, then selling them on street corners for a higher price. It clearly wasn’t that kind of free!

Then, I imagined that was (like so many thin publications of the time) some hippy-dippy propaganda rag full of free-love manifestos and ads for beatnik-poetry venues. Being a veteran hippy-beatnik-biker, that was okay with me. I didn’t care as long as there was coin to be had. I wasn’t one of Donovan Leitch’s “beatniks out to make it rich,” but I was interested in coming up with lunch money!

The main headline on the first page of the copies we got in exchange for a mortgage on my driver’s license sounded like a local-interest story that I was not embarrased to wave at potential newsprint buyers, so it didn’t seem to be some hippy-dippy propaganda rag, either. The papers actually sold pretty well!

I needed the money (being dead broke at the time), so I swallowed my pride and did the job. I kept the last copy from my stack, however, to read when I got back to wherever I was sleeping that night.

By the time I’d finished reading the thing I’d realized why the publication was called The L.A. Free Press. It was an independent newspaper founded by a small group dedicated to investigative journalism with nobody to answer to but their readers. I became proud to be working with them.

If I’d been smart and ambitious I would have tried to get a job with them writing copy. After all, part of my reason for relocating was to find some kind of writing gig. But, as is typical with homeless eighteen-year-olds living on the streets, I was more frightened and depressed than smart and ambitious. The next day I moved on to doing something that turned out to be another stupid career move.

Sometimes depression is not a sign of mental illness, but a rational response to the way your life is going.

What I learned from that episode of my misspent youth (What’s the point of misspending your youth if you’re not going to learn something from it?) was what intellectuals mean when they talk about “the Free Press.” It’s not just some empty slogan you hear once in a while on CNN. It’s how we, as citizens of a free country, keep track of what’s going on outside of our individual hovels.

The difference between we citizens of a free country and downtrodden medieval serfs slaving to feed their “betters,” is that we have some say in what goes on outside our hovels. We can’t affect things in a way that’s good for us and the people we care about unless we find out what’s actually going on out there. For that we hire independent journalists who have at least half a brain and make it their business to find out for us.

We pay them a living wage and (if we’ve got at least half a brain ourselves) listen to what they tell us is happening. The Free Press is not, as some dishonest demagogues try to tell us, “the enemy of the people,” but a necessary part of a free democratic society.

For this reason, the journalistic profession has been called “The Fourth Estate” since the Enlightenment. Originally, the term was meant to indicate that a Free Press was available – in addition to the three original estates of clergy, aristocracy and commoners – whose writ was to frame the debate upon which society made common decisions. Later political systems still had (usually) three competing authorities explicitly charged with governing, along with a Free Press implicitly charged with framing the debate about what to do next.

In the United States, our Constitution explicitly delineates a government made up of three co-equal branches: Legislature, Court System, and Executive. The Founding Fathers (If that’s not a sexist term, I don’t know what is!) realized they’d forgotten the Free Press in the original document when they couldn’t get anybody to ratify (agree to) the thing without immediately amending it to include a Free Press (as well as the rest of the Bill of Rights).

The Free Press was considered so important that it was included in the first amendment.

Before anybody gets the idea that I’m criticizing the Founding Fathers as incompetent, I want to point out that this error just goes to prove that those guys were human, and humans make mistakes. Specifically, they were exceedingly bright guys to whom the need for a vibrant Free Press was so obvious that they forgot to mention it. The first ten Amendments – the Bill of Rights – should be seen as an “Oh, Shit!” moment.

“How could we have left that out?”

Having a Free Press, and making good use of it, is the first thing you have to have to set up a democracy. In a sense, it’s not the “fourth” estate, but the first. All the rest is afterthought. It’s bells and whistles designed to be the mechanical parts of a democracy. They’re of no value whatsoever without a Free Press.

On the other hand, once you have a functioning Free Press and a society that makes good use of it, the rest of the bells and whistles will inevitably follow. In that sense, the Free Press is not an afterthought or a result of democracy. Instead, it’s the essence of democracy. That’s why the first thing would-be authoritarians seek to eliminate is the Free Press.

The ASEAN Community

ASEAN Summer 2019 Logo
The 34th Asean Summit Bangkok: Advancing Partnership For Sustainability, 23 June 2019

Apologies to all the folks whose words I’ve expropriated for this piece with insufficient attribution – mostly from Wikipedia and ASEAN sources. It’s already taken three days to piece this essay together and I’m trying to get it published while the dateline is still good! Just ONE more editing pass.

26 June 2019 – This is an appropriate time to visit a little-known and -acknowledged regional international community being developed in Southeast Asia: ASEAN. Last Sunday (23 June 2019) marked the 34th meeting of the ASEAN Summit in Bangkok, Thailand

ASEAN was established on 8 August 1967 with the signing of the ASEAN Declaration (Bangkok Declaration) by the five founding member states, namely Indonesia, Malaysia, Philippines, Singapore and Thailand. Five additional member states – Brunei Darussalam (1984), Viet Nam (1995), Lao PDR and Myanmar (1997), and Cambodia (1999) – joined later to complete the ten member states of ASEAN today. An eleventh nation, Timor-Leste (in English: East Timor) has applied for membership.

The creation of ASEAN was originally motivated by a common fear of communism among the original five founding member states. ASEAN achieved greater cohesion in the mid-1970s following a change in the international balance of power after the end of the Vietnam War in 1975. The region’s dynamic economic growth during the 1970s strengthened the organization, enabling ASEAN to adopt a unified response to Vietnam’s invasion of Cambodia in 1979.

ASEAN’s first summit meeting, held in Bali, Indonesia in 1976, resulted in an agreement on several industrial projects and the signing of a Treaty of Amity and Cooperation, and a Declaration of Concord.

The end of the Cold War between the West and the Soviet Union at the end of the 1980s allowed ASEAN countries to exercise greater political independence in the region, and in the 1990s ASEAN emerged as a leading voice on regional trade and security issues.

ASEAN has a total population of 642 million people, which is nearly double that of the United States (327 million), and twenty-five percent larger than that of the European Union (513 million). Its average annual income per person, however, is only $4,308.00, putting it between the Israeli-occupied West Bank and Mauritania in the Western Sahara as far as average wealth per person is concerned. That means its people still have a long way to go! Its GDP growth rate, however, is 5.3% per annum, which is comparable to that of Egypt or Pakistan and ahead of the average for even emerging and developing countries.

Why Do We Care?

Why should Americans care about ASEAN?

First, it has aspirations to be a regional intergovernmental organization similar to the European Union in an region where the United States has economic and political interests. Their charter specifically calls for adherence to basic principles in line with those of the United States and other Western democracies. Notably the ASEAN charter specifically calls for adherence to democratic principles and maintaining the region as a nuclear-free zone.

Second, as a large and (aspirationally) politically and economically cohesive regional intergovernmental organization, ASEAN can provide a large and (again aspirationally) economically powerful ally in Southeast Asia to counterbalance Chinese efforts to extend its hegemony in the region. Especially, their actions reveal a desire to cooperate with the United States and its allies. For example, the charter refers in numerous places to working with United Nations principles and protocols, and establishes English as the ASEAN working language.

Organization

The ASEAN Community is comprised of three “pillars:” the ASEAN Political-Security Community, the ASEAN Economic Community and the ASEAN Socio-Cultural Community. Each pillar has its own Blueprint, and, together with the Initiative for ASEAN Integration (IAI) Strategic Framework and IAI Work Plan Phase II (2009-2015), they form the Roadmap for an ASEAN Community.

The figure below shows ASEAN’s top organization levels. At the top is the ASEAN Summit, comprised of the heads of state or government of the member states. By charter, they meet together twice a year, hosted by the member state holding the ASEAN Chairmanship, which cycles through the member states. At present, that is Thailand (Prime Minister General Prayut Chan-o-cha), so the latest meeting was held on 23 June 2019 in the Thai capital, Bangkok.

ASEAN Org Chart
ASEAN Organizational Structure.

At the next level, ASEAN is divided into three Community Councils that represent the three pillars of ASEAN activity:

  1. The ASEAN Political-Security Community Council

  2. The ASEAN Economic Community Council

  3. The ASEAN Socio-Cultural Community Council

Each of the three Community Councils has their own makeup and sphere of activity. The ASEAN Coordinating Council, for example, comprises the Foreign Ministers of the ASEAN member states and meets at least twice a year, not only to prepare the meetings of the ASEAN Summit, but to undertake other tasks provided for in the Charter, or for such other functions as may be assigned by the ASEAN Summit. For example, the Coordinating Council coordinates implementation of agreements and decisions of the ASEAN Summit.

In order to realize the objectives of each of the three pillars of the ASEAN Community, each ASEAN Community Council ensures the implementation of the relevant decisions of the ASEAN Summit; coordinates the work of the different sectors under its purview; ensures implementation of Summit decisions on issues that cut across the other Community Councils; and submits reports and recommendations to the ASEAN Summit on matters under its purview.

Each member state designates its own national representatives for each ASEAN Community Council. In addition, each ASEAN member state establishes an ASEAN National Secretariat that serves as a national focal point, the repository of information on all ASEAN matters at the national level, coordinates the implementation of ASEAN decisions at the national level, coordinates and supports the national preparations of ASEAN meetings, promotes ASEAN identity and awareness at the national level, and contributes to ASEAN community building.

Political-Security Community

ASEAN member states pledge to rely exclusively on peaceful processes in the settlement of intra-regional differences and with regard to their security. They are fundamentally linked to one another and bound by geographic location, as well as by a common vision and objectives.

The ASEAN Political-Security Community (APSC) aims to ensure that countries in the region live at peace with one another and with the world in a just, democratic and harmonious environment. The APSC Blueprint envisages ASEAN to be a rules-based community of shared values and norms; a cohesive, peaceful, stable and resilient region with shared responsibility for comprehensive security; and a dynamic and outward-looking region in an increasingly integrated and interdependent world. The APSC’s normative activities include: political development; shaping and sharing of norms; conflict prevention; conflict resolution; post-conflict peace building; and implementing mechanisms.

Economic Community

The ASEAN Economic Community (AEC) has a Consolidated Strategic Action Plan (CSAP) that includes strategic measures in the AEC Blueprint 2025 that takes into account the relevant sector work plans, and is reviewed periodically to account for developments in each sector.

The inaugural issue of the ASEAN Economic Integration Brief (AEIB) was released on 30 June 2017. The AEIB provides regular updates on ASEAN economic integration progress and outcomes, and is a demonstration of ASEAN’s commitment to strengthen communication and outreach to raise stakeholder awareness of the AEC.

The ASEAN Good Regulatory Practice (GRP) Core Principles was adopted at the 50th AEM Meeting in 29 August 2018 and subsequently endorsed by the AEC Council. It provides a practical, non-binding set of principles to assist ASEAN member states to improve their regulatory practice and foster ASEAN-wide regulatory cooperation.

Socio-Cultural Community

At the heart of the ASEAN Socio-Cultural Community (ASCC) is the commitment to lift the quality of life of ASEAN peoples through cooperative activities that are people-oriented, people-centered, environmentally friendly, and geared toward the promotion of sustainable development through member states’ cooperation on a wide range of areas including: culture and information, education, youth and sports, health, social welfare and development, women and gender, rights of the women and children, labor, civil service, rural development and poverty eradication, environment, transboundary haze-pollution, disaster management and humanitarian assistance.

Free-Trade Zone

The AEC aims to “implement economic integration initiatives” to create a single market across ASEAN member states. Its blueprint, adopted during the 13th ASEAN Summit (2007) in Singapore, serves as a master plan guiding the establishment of the community. Its characteristics include a single market and production base, a highly competitive economic region, a region of fair economic development, and a region fully integrated into the global economy.

The areas of co-operation include human resources development; recognition of professional qualifications; closer consultation on macroeconomic and financial policies; trade financing measures; enhanced infrastructure and communications connectivity; development of electronic transactions through e-ASEAN; integrating industries across the region to promote regional sourcing; and enhancing private sector involvement.

The AEC is the embodiment of the ASEAN’s vision of “a stable, prosperous and highly competitive ASEAN economic region in which there is a free flow of goods, services, investment and a freer flow of capital, equitable economic development and reduced poverty and socio-economic disparities.”

The average economic growth of member states from 1989 to 2009 was between 3.8% and 7%. This was greater than the average growth of APEC, which was 2.8%. The ASEAN Free Trade Area (AFTA), established on 28 January 1992, includes a Common Effective Preferential Tariff (CEPT) to promote the free flow of goods between member states.

ASEAN member states have made significant progress in the lowering of intra-regional tariffs through the CEPT. More than 99 percent of the products in Brunei Darussalam, Indonesia, Malaysia, the Philippines, Singapore and Thailand, have been brought down to the 0-5 percent tariff range. ASEAN’s newer members, namely Cambodia, Laos, Myanmar and Viet Nam, are not far behind.

ASEAN member states have also resolved to work on the elimination of non-tariff barriers, which includes, among others, the process of verification and cross-notification; updating the working definition of Non-Tariff Measures (NTMs)/Non-Tariff Barriers (NTBs); the setting-up of a database on all NTMs maintained by member states; and the eventual elimination of unnecessary and unjustifiable non-tariff measures.

I led this essay off with the comment that ASEAN does not seem to get the attention it deserves, at least in U.S. national media. Certainly, U.S. President Donald Trump seems to feel it’s not worth a tweet. The closest I was able to find with a quick Internet search was a report that he insulted Philippines President Rodrigo Duterte before meeting him on the sidelines of the Winter 2017 ASEAN Summit meeting!

That said, I must report that I became interested in ASEAN through a segment in Fareed Zacharia’s GPS show on CNN. So, not everybody is completely ignoring what I’ve come to realize is potentially an important regional intergovernmental organization.

I encourage you to learn more about ASEAN by visiting the various links peppering this column. Maybe together we can generate more interest in what could be a powerful U.S. ally in the Eastern Pacific.

Fed Reports on U.S. Economic Well-Being

Federal Reserve Building
The Federal Reserve released the results of its annual Survey of Household Economics and Decisionmaking for calendar year 2018 last week. Image by Thomas Barrat / Shutterstock

29 May 2019 – Last week (specifically 23 May 2019) the Federal Reserve Board released the results of its annual Survey of Household Economics and Decisionmaking for CY2018. I’ve done two things for readers of this blog. First, I downloaded a PDF copy of the report to make available free of charge on my website at cgmasi.com alongside last year’s report for comparison. Second, I’m publishing an edited extract of the report’s executive summary below.

The report describes the results of the sixth annual Survey of Household Economics and Decisionmaking (SHED). In October and November 2018, the latest SHED polled a self-selected sample of over 11,000 individuals via an online survey.

Along with the survey-results report, the Board published the complete anonymized data in CSV, SAS, STATA formats; as well as a supplement containing the complete SHED questionnaire and responses to all questions in the order asked. The survey continues to use subjective measures and self-assessments to supplement and enhance objective measures.

Overall Results

Survey respondents reported that most measures of economic well-being and financial resilience in 2018 are similar to or slightly better than in 2017. Many families have experienced substantial gains since the survey began in 2013, in line with the nation’s ongoing economic expansion during that period.

Even so, another year of economic expansion and the low national unemployment rates did little to narrow the persistent economic disparities by race, education, and geography. Many adults are financially vulnerable and would have difficulty handling an emergency expense as small as $400.

In addition to asking adults whether they are working, the survey asks if they want to work more and what impediments they see to them working.

Overall Economic Well-Being

A large majority of individuals report that, financially, they are doing okay or living comfortably, and overall economic well-being has improved substantially since the survey began in 2013

  • When asked about their finances, 75% of adults say they are either doing okay or living comfortably. This result in 2018 is similar to 2017 and is 12%age points higher than 2013.

  • Adults with a bachelor’s degree or higher are significantly more likely to be doing at least okay financially (87%) than those with a high school degree or less (64%).

  • Nearly 8 in 10 whites are at least doing okay financially in 2018 versus two-thirds of blacks and Hispanics. The gaps in economic well-being by race and ethnicity have persisted even as overall wellbeing has improved since 2013.

  • Fifty-six percent of adults say they are better off than their parents were at the same age and one fifth say they are worse off.

  • Nearly two-thirds of respondents rate their local economic conditions as “good” or “excellent,” with the rest rating conditions as “poor” or “only fair.” More than half of adults living in rural areas describe their local economy as good or excellent, compared to two-thirds of those living in urban areas.

Income

Changes in family income from month to month remain a source of financial strain for some individuals.

  • Three in 10 adults have family income that varies from month to month. One in 10 adults have struggled to pay their bills because of monthly changes in income. Those with less access to credit are much more likely to report financial hardship due to income volatility.

  • One in 10 adults, and over one-quarter of young adults under age 30, receive some form of financial support from someone living outside their home. This financial support is mainly between parents and adult children and is often to help with general expenses.

Employment

Most adults are working as much as they want to, an indicator of full employment; however, some remain unemployed or underemployed. Economic well-being is lower for those wanting to work more, those with unpredictable work schedules, and those who rely on gig activities as a main source of income.

  • One in 10 adults are not working and want to work, though many are not actively looking for work. Four percent of adults in the SHED are not working, want to work, and applied for a job in the prior 12 months. This is similar to the official unemployment rate of 3.8% in the fourth quarter of 2018.

  • Two in 10 adults are working but say they want to work more. Blacks, Hispanics, and those with less education are less likely to be satisfied with how much they are working.

  • Half of all employees received a raise or promotion in the prior year.

  • Unpredictable work schedules are associated with financial stress for some. One-quarter of employees have a varying work schedule, including 17% whose schedule varies based on their employer’s needs. One-third of workers who do not control their schedule are not doing okay financially, versus one-fifth of workers who set their schedule or have stable hours.

  • Three in 10 adults engaged in at least one gig activity in the prior month, with a median time spent on gig work of five hours. Perhaps surprisingly, little of this activity relies on technology: 3% of all adults say that they use a website or an app to arrange gig work.

  • Signs of financial fragility – such as difficulty handling an emergency expense – are slightly more common for those engaged in gig work, but markedly higher for those who do so as a main source of income.

Dealing with Unexpected Expenses

While self-reported ability to handle unexpected expenses has improved substantially since the survey began in 2013, a sizeable share of adults nonetheless say that they would have some difficulty with a modest unexpected expense.

  • If faced with an unexpected expense of $400, 61% of adults say they would cover it with cash, savings, or a credit card paid off at the next statement – a modest improvement from the prior year. Similar to the prior year, 27% would borrow or sell something to pay for the expense, and 12% would not be able to cover the expense at all.

  • Seventeen percent of adults are not able to pay all of their current month’s bills in full. Another 12% of adults would be unable to pay their current month’s bills if they also had an unexpected $400 expense that they had to pay.

  • One-fifth of adults had major, unexpected medical bills to pay in the prior year. One-fourth of adults skipped necessary medical care in 2018 because they were unable to afford the cost.

Banking and Credit

Most adults have a bank account and are able to obtain credit from mainstream sources. However, sub- stantial gaps in banking and credit services exist among minorities and those with low incomes.

  • Six percent of adults do not have a bank account. Fourteen percent of blacks and 11% of Hispanics are unbanked versus 4% of whites. Thirty-five percent of blacks and 23% of Hispanics have an account but also use alternative financial services, such as money orders and check cashing services, compared to 11% of whites.

  • More than one-fourth of blacks are not confident that a new credit card application would be approved if they applied—over twice the rate among whites.

  • Those who never carry a credit card balance are much more likely to say that they would pay an unexpected $400 expense with cash or its equivalent (88%) than those who carry a balance most or all of the time (40%) or who do not have a credit card (27%).

  • Thirteen percent of adults with a bank account had at least one problem accessing funds in their account in the prior year. Problems with a bank website or mobile app (7%) and delays in when funds were available to use (6%) are the most common problems. Those with volatile income and low savings are more likely to experience such problems.

Housing and Neighborhoods

Satisfaction with one’s housing and neighborhood is generally high, although notably less so in low-income communities. While 8 in 10 adults living in middle- and upper-income neighborhoods are satisfied with the overall quality of their community, 6 in 10 living in low- and moderate-income neighborhoods are satisfied.

  • People’s satisfaction with their housing does not vary much between more expensive and less expensive cities or between urban and rural areas.

  • Over half of renters needed a repair at some point in the prior year, and 15% of renters had moderate or substantial difficulty getting their landlord to complete the repair. Black and Hispanic renters are more likely than whites to have difficulties getting repairs done.

  • Three percent of non-homeowners were evicted, or moved because of the threat of eviction, in the prior two years. Evictions are slightly more common in urban areas than in rural areas.

Higher Education

Economic well-being rises with education, and most of those holding a post-secondary degree think that attending college paid off.

  • Two-thirds of graduates with a bachelor’s degree or more feel that their educational investment paid off financially, but 3 in 10 of those who started but did not complete a degree share this view.

  • Among young adults who attended college, more than twice as many Hispanics went to a for-profit institution as did whites. For young black attendees, this rate was five times the rate of whites.

  • Given what they know now, half of those who attended a private for-profit institution say that they would attend a different school if they had a chance to go back and make their college choices again. By comparison, about one-quarter of those who attended public or private not-for-profit institutions would want to attend a different school.

Student Loans and Other Education Debt

Over half of young adults who attended college took on some debt to pay for their education. Most borrowers are current on their payments or have successfully paid off their loans.

  • Among those making payments on their student loans, the typical monthly payment is between $200 and $299 per month.

  • Over one-fifth of borrowers who attended private for-profit institutions are behind on student loan payments, versus 8% who attended public institutions and 5% who attended private not-for-profit institutions.

Retirement

Many adults are struggling to save for retirement. Even among those who have some savings, people commonly lack financial knowledge and are uncomfortable making investment decisions.

  • Thirty-six percent of non-retired adults think that their retirement saving is on track, but one-quarter have no retirement savings or pension whatsoever. Among non-retired adults over the age of sixty, 45% believe that their retirement saving is on track.

  • Six in 10 non-retirees who hold self-directed retirement savings accounts, such as a 401(k) or IRA, have little or no comfort in managing their investments.

  • On average, people answer fewer than three out of five financial literacy questions correctly, with lower scores among those who are less comfortable managing their retirement savings.

The forgoing is an edited extract from the Report’s Executive Summary. A PDF version of the entire report is available on my website at cgmasi.com [ http://cgmasi.com ] along with a PDF version of the 2017 report, which was published in May of 2018 and based on a similar survey conducted in late 2017. Reports dating back to the first survey done in late 2013 are available from the Federal Reserve Board’s website linked to above.

Authoritarian’s Lament

Davy Crockett stamp
Davy Crockett was an individualistic hero for children growing up in the 1950s and 1960s. Circa 1967 post stamp printed in USA shows Davy Crockett with rifle and scrub pines. Oldrich / Shutterstock.com

22 May 2019 – I grew up believing in the myth of the rugged individualist.

As did most boys in the 1950s, I looked up to Davy Crockett, Daniel Boone and their ilk. Being fond of developing grand theories, I even worked out an hypothesis that the wisdom of any group’s decisions was inversely proportional to the group’s size (number of members) because in order to develop consensus, the decision had to be acceptable to even the stupidest member of the group.

With this background, I used to think that democracy’s main value was that it protected the rights of individuals – especially those rugged individuals I so respected – so they could scout the path to the future for everyone else to follow.

I’ve since learned better.

There were, of course, a lot of holes in this philosophy, not the least of which was that it matched up so well with the fevered imaginings I saw going on in the minds of authoritarian figures and those who wanted to cozy up to authoritarian figures. Happily, I recognized those philosophical holes and wisely kept on the lookout for better ideas.

First, I realized that no single individual, no matter how accomplished, could do much of anything on their own. Even Albert Einstein, that heroic misfit scientist, was only able to develop his special theory of relativity by abandoning some outdated assumptions that made interpreting results of experiments by other scientists problematic. Without a thorough immersion in the work of his peers, he wouldn’t have even known there was a problem to be solved!

Similarly, that arrogant genius, Sir Isaac Newton  recognized his debt to his peers in a letter to Robert Hooke on 5 February 1676 by saying: “If I have seen a little further it is by standing on the shoulders of giants.”

For all of his hubris, Newton was well known to immerse himself in the society of his fellows.

Of course, my childhood heros, Davy Crockett, Daniel Boone, and Captain Blood, only started out as rugged individuals. They then went on to gather followers and ended up as community leaders of one sort or another. As children, we used to forget that!

My original admiration of rugged individualists was surely an elitist view, but it was tempered with the understanding that predicting in advance who was going to be part of that elite was an exercise in futility. I’d already seen too many counterexamples of people who imagined that they, or somebody they felt inferior to, would eventually turn out to be one of the elite. In, for example, high school, I’d run into lots of idiots (in my estimation) who strutted around thinking they were superior to others because of (usually) family background or social position.

We called that “being a legend in their own mind.”

Diversity Rules!

Eventually, I realized what ancient Athenians had at least a glimmer of, and the framers of the Declaration of Independence and the U.S. Constitution certainly had a clear idea of, and what modern management theorists harp on today: the more diverse a group is, the better its decisions tend to be.

This is, of course, the exact reverse of my earlier rugged-individualist hypothesis.

As one might suspect, diversity is measurable, and there are numerous diversity indices one might choose from to quantify the diversity within a group. Here I’m using the word “group” in the mathematical sense that such a group is a set whose members (elements) are identifiable by sharing specific characteristics.

For example, “boys” forms a group of juvenile male human beings. “Girls” forms another similar, but mutually exclusive group. “Boys” and “girls” are both subsets of multiple larger groups, one of which is “young people.”

“Diversity” seeks to measure the number of separate subgroups one can find within a given group. So, you can (at least) divide “young people” into two subgroups “boys” and “girls.”

The importance of this analysis is that the different characteristics common within subgroups lead to different life experiences, which, the diversity theory posits, provide different points of view and (likely) different suggestions to be considered for solutions to any given problem.

So, the theory goes, the more diverse the group, the more different solutions to the problem can be generated, and the more likely a superior choice will be presented. With more superior choices available and a more diverse set (There’s that word again!) of backgrounds that can be used to compare the choices, the odds are that the more diversity in a group, the better will be the solution it finally chooses.

Yeah, this is a pretty sketchy description of the theory, but Steven Johnson spends 216 pages laying it out in his book Farsighted, and I don’t have 216 pages here. The sketch presented here is the best I can do with the space available. If you want more explanation, buy the book and read it.

Here I’m going to seize on the Gini–Simpson diversity index, which uses the probability that two randomly selected members of a group are members of the same subgroup (λ), then subtracts it from unity. In other words in a group of, say, young people containing equal numbers of boys and girls, the probability that any pair of members selected at random will be either both boys or both girls is 0.5 (50%). The Gini-Simpson index is 1-λ = 1 – 0.5 = 0.5.

A more diverse group (one with three subgroups, for example) would have a lower probability of any pair being exactly matched, and a higher Gini-Simpson diversity index (closer to 1.0). Thus, the diversity theory would have it that such a group would have a better chance of making a superior decision.

Authoritarians Don’t Rule!

Assuming I’ve convinced you that diversity makes groups smarter, where does that leave our authoritarian?

Let’s look at the rugged-individualist/authoritarian situation from a diversity-index viewpoint. There, the number of subgroups in the decision-making group is one, ‘cause there’s only one member to begin with. Randomly selecting twice always comes up with identically the same member, so the probability of getting the same one twice is exactly one. That is, it’s guaranteed.

That makes the diversity score of an individualist/authoritarian exactly zero. In other words, according to the diversity decision-making theory, authoritarians are the worst possible decision makers!

And, don’t try to tell me individualist/authoritarians can cheat the system by having wide-ranging experiences and understanding different cultures. I’ve consciously done exactly that for seven decades. What it’s done is to give me an appreciation of different cultures, lifestyles, philosophies, etc.

It did not, however, make me more diverse. I’m still one person with one brain and one viewpoint. It only gave me the wisdom(?) to ask others for their opinions, and listen to what they say. It didn’t give me the wisdom to answer for them because I’m only the one person with the one viewpoint.

So, why do authoritarian regimes even exist?

What folks often imagine as “human nature” provides the answer. I’m qualifying “human nature” because, while this particular phenomenon is natural for humans, it’s also natural for all living things. It’s a corollary that follows from Darwin’s natural-selection hypothesis.

Imagine you’re a scrap of deoxyribonucleic acid (DNA). Your job is to produce copies of yourself. If you’re going to be successful, you’ll have to code for ways to make lots of copies of yourself. The more copies you can make, the more successful you’ll be.

Over the past four billion years that life is estimated to have been infesting the surface of Earth, a gazillion tricks and strategies have been hit upon by various scraps of DNA to promote reproductions of themselves.

While some DNA has found that promoting reproduction of other scraps of DNA is helpful under some circumstances, your success comes down to promoting reproduction of scraps of DNA like you.

For example, human DNA has found that coding for creatures that help each other survive helps them survive. Thus, human beings tend to cluster in groups, or tribes of related individuals – with similar DNA. We’re all tribal, and (necessarily) proud of it!

Anyway, another strategy that DNA uses for better survival is to prefer creatures similar to us. That helps DNA evolve into more successful forms.

In the end, the priority system that necessarily evolves is:

  • Identical copies first (thus, the bond between identical twins is especially strong);

  • Closely related copies next;

  • More distantly related copies have lower priority.

We also pretty much all like pets because pets are unrelated creatures that somehow help us survive to make scads of copies of our own DNA. But, we prefer mammals as pets because mammals’ DNA is very much like our own. More people keep cats and dogs as pets, than snakes or bugs. See the pattern?

We prefer our children to our brothers (and sisters).

We prefer our brothers and sisters to our neighbors.

We prefer our neighbors to our pets. (Here the priority systems is getting pretty weak!)

And, so forth.

In other words, all living things prefer other living things that are like them.

Birds of a feather flock together.

That is the basis of all discrimination phenomena, from racial bias to how we choose our friends.

How Authoritarians Rule, Anyway.

What has that to do with authoritarianism?

Well, it has a lot to do with authoritarianism! Authoritarians only survive if they’re supported by populations who prefer them enough to cede decision-making power to them. Otherwise, they’d just turn and walk away.

So authoritarian societies require populations with low diversity who generally are very much like the leaders they select. If you want to be an authoritarian leader, go find a low-diversity population and convince them you’re just like them. Tell ‘em they’re the greatest thing since sliced bread because they’re so much like you, and that everyone else – those who are not part of your selected population – are inferior scum simply because they’re not like your selected population. The your followers will love you for it, and hate everyone else.

That’s why authoritarian regimes mainly thrive in low-diversity, xenophobic populations.

That despite (or maybe because of) the fact that such populations are likely to make the poorest decisions.