Analysis of an Investment Opportunity

InvestmentImage
Take time to analyze an investment opportunity before pulling the trigger. Image by Peshkova/Shutterstock

13 May 2020 – This essay is based on a paper I wrote recently as part of my studies for a Doctor of Business Administration (DBA) at Keiser University. I thought readers might like seeing how to properly analyze investment opportunities before making a final decision, so I’ve revised the paper for presentation here.

In a surprising coincidence, bright and early Monday (3/23/2020) morning I received a call from Saira Morgan of Rustik Haws (RH) publishers wanting to republish a novel (entitled Red) that I launched in 2010 with another publisher (iUniverse), which had a disappointing sales history. It seems RH’s editors had reviewed the book, and felt that the problem was not the book’s content, but that it had been badly mispriced at $29.95 in paperback, or $39.95 in hardcover. RH wanted to re-launch a new edition of the book priced more reasonably at $12.99 in paperback. The original publisher had based their price on the book’s large page count (588 pages), and I had uncritically accepted their suggestion. The contract I have with iUniverse stipulates that I own the copyright, and am free to republish the work at will.

SM’s call was a surprising coincidence because that week’s topic for the Financial Theory & Policy course I was taking at the time was the question: “How can you use [mean variance optimization] to ensure that the business organization you are leading will succeed without losing money in some investment activities?” The RH proposal thus presented an opportunity to use the capital asset pricing model (CAPM) to evaluate their offer (Fama, & French, 2004), and write about it on the class forum.

My initial reaction to SM’s call was positive because feedback I’ve received from booksellers was that the price impediment was enough to prevent booksellers from carrying the book at all, thus preventing potential readers from ever sampling its content. Before even starting to evaluate RH’s proposal, however, I wanted to find out who the company was, and whether I wanted to take their offer seriously. I have received offers from other vanity-press publishers that were not at all professional.

Thus, I started evaluating the opportunity by visiting the Rustik Haws website. A cursory inspection showed that it looked quite professional and offered a full suite of the services one would expect from a modern self-publishing house. The biggest concern was that they only started the company in 2014, which is recent in a business where many firms have been around for a century or more.

A visit to the Better Business Bureau (BBB) website showed them to have an A- rating, and the only derogatory comment was about RH’s time in business (Better Business Bureau, 2020). BBB counted as time-in-service only the one year from RH’s move to Tampa, FL in May of 2019. The company did get two derogatory customer reviews, but both were by individuals who never actually worked with them. They’d been put off by RH’s tactic of cold-calling potential customers. I discounted those because how else are you going to drum up business? There were no complaints from actual customers. Altogether, I judged that it was worthwhile to at least evaluate RH’s offer.

The appropriate tool for evaluating a potential investment like this one is the corporate asset pricing model (CAPM). Copeland, Weston, and Shastri (2005) show the inputs for the CAPM to be the risk-free rate of return, the expectation value of the market rate of return, the market variance, and the asset-return’s covariance with the market return, which is called its beta. The first four should be available from online sources or my stock broker.

The asset’s expected returns and its beta are another matter, however. I would have to estimate the potential returns based on the deal RH is offering and sales history of other books I’ve written. Luckily, I have quarterly sales history for a how-to book (entitled How to Set Up Your Motorcycle Workshop) that I launched in 1995 with another publisher (Whitehorse Press), and which is still selling well in its third edition. I would be able to calculate beta by matching sales figures with contemporary market gyrations. So, I judged that I had identified adequate sources for the information needed to evaluate the RH offer using mean variance optimization (specifically CAPM), and compare it to the RH buy-in price.

Estimating Beta from Historical Data

It happens that not only did I have the quarterly reports from WP available, I also had complete daily closing prices for the Dow Jones Industrial Average (DJIA) going back to the beginning of the index. I selected from all this information data to form a picture of the first 10 quarters (two-and-a-half years) of the WP-book’s performance using an Excel spreadsheet (summarized as Table 1 below). The first two columns of the spreadsheet include an index (I always include an index as a best practice when composing a spreadsheet), and dates of the closing day of each quarter. The index runs from zero to ten to provide a pre-date-range value to allow taking differences between entries. Note that the first period was dated two weeks before the close of the first quarter because that is when WP closed its books and issued the report for the first-quarter’s performance. It does report a full quarter’s results, though. I chose to start with the initial post-book-launch data as that most likely paints a representative picture of sales for a new-book launch.

The third through fifth columns list DJIA’s closing prices, changes from the previous quarter’s value, and those changes relative to the previous quarter’s closing value (thus, the DJIA rate of change per quarter). Beneath those columns I’ve collected the mean, standard deviation, and variance computed using Excel’s statistical functions. Similarly, I’ve listed the WP data and calculations in columns seven through nine. Column seven lists the WP book’s unit sales. Column eight lists quarterly royalties paid. Column nine converts those royalties into quarterly returns on a hypothetical $1,000 initial investment by WP. I do not have information about what WP’s initial investment actually was, but the amount matches what Rustik Haws was asking, and is fairly typical for the industry. Below the WP performance data is the mean, standard deviation, and variance for the return on investment (ROI) computed by Excel’s statistical functions.

I was unhappy with the results returned by Excel’s covariance function, so I added column six that manually computes the covariance between the DJIA fluctuations and those of the ROI. The columnar portion computes the product of quarterly changes in the DJIA and those of the ROI. Cells below the column sum the quarterly contributions from column nine, then divides that sum by a count of the values in the sum to average the covariance values. Finally, I added a cell below that computes the investment’s beta by dividing by the variance Excel computed for the DJIA fluctuations.

The estimated beta has a magnitude of slightly over 0.6 and moves opposite the market fluctuations (shown by its having a negative sign). These data will inform the CAPM calculation of an expected return on the contract proposed by Rustik Haws (Ross, 1976).

Expected Value of Rustik Haws Proposal

To be an attractive proposition, the Rustik Haws proposal would have to provide an expected quarterly return greater than that projected by the CAPM (Fama, & French, 2004), which reads:

Ei = Rf + β(Em – Rf),

where Ei is the expected return required for the investment, Rf is the return on a risk-free asset (e.g., a three-month Treasury Bill), β is the covariance of royalties from the sale of the WP book with the market chosen for comparison (the DJIA), Em is the expected market return.

The quarterly returns from the DJIA give Em = 0.0489 ≈ 0.05 (the average relative return per quarter), and β = -0.06172 ≈ -0.06. I’ll take the risk-free rate to be the Federal Reserve’s target rate. Right now, the Fed has decided to set its target interest rate anomalously low (approximately zero) in response to stress on the economy from the COVID-19 pandemic, but it is reasonable to expect that to rise back to the pre-pandemic rate of 2% per annum (0.02/4 = 0.005 per quarter), which can be used for the risk-free rate, Rf. Plugging these values into the CAPM equation gives a required quarterly return of 0.0473, or 4.7%. That return on a $1,000 investment means the quarterly royalty projection should be >$47.30.

Not surprisingly, Rustik Haws has not projected quarterly sales for the re-launched book, but the assumption for this analysis is that unit sales might be similar to those of the WP book, which appear in Table 1. Rustik Haws’ per-copy cost structure provides $12.99 (retail price) – $3.89 (bookseller’s commission) – $5.83 (printing cost) = $3.27. The average quarterly sales for the WP book was 211 during that first 10 quarters. That makes the expectation value of royalties equal to $3.27 x 211 = $689.97. This is over 14 times the $47.30 required by CAPM, and argues strongly in favor of accepting the offer.

Best Competing Use of Funds

Completing the analysis requires using the CAPM to compare the RH opportunity to the best alternative use of the funds. That happens to be expanding my portfolio of stocks. To do that, requires estimating the expected return on the stock market going forward, and the beta of the portfolio.

The stock market is currently in the recovery phase after a serious disruption by the COVID-19 pandemic. So far, the recovery appears to be more-or-less L-shaped. That is, after a 34% initial drop (23 March), there was an immediate recovery to somewhere around 17% down, followed by a movement around that 17% down value with no clear direction. I interpret the 34% initial drop to be an overcorrection that was reversed by the rise back to 17% down. That I consider the true level based on the market’s expectation of future returns. The flatness of the current movement of both the DJIA and S&P 500 indices signals uncertainty as to whether there will be a second peak in COVID-19 cases.

Historically, after a financial crisis markets recover to their previous-high level after about a year (which would be near the end of 1Q 2021). So, guesstimating a typical recovery scenario without a double-dip, we can expect a 17% recovery from the current level in very roughly one year, which gives a compound quarterly growth rate of 4.9% on the $1,000 investment, or only $49.26. This still argues in favor of taking the RH opportunity.

In actual fact, experience shows that it takes roughly a year to bring a new edition of a book to launch. Thus, the returns for both the relaunched book and recovering stock market should commence more-or-less at the same time. At that point, experience indicates the market should have settled on the long-term compound annual growth rate, which is 7% (corrected for inflation) for the S&P 500 (Moneychimp, 2020). This translates into $70.00 for the projected $1,000 investment, which is still only one tenth of the expected $689.97 quarterly return on the RH investment. Thus, working with RH to relaunch Red appears to be by far the best use of funds.

References

Better Business Bureau (2020) Rustik Haws LLC. [Web site] Clearwater, FL: Better Business Bureau. Retrieved from https://www.bbb.org/us/fl/tampa/profile/digital-marketing/rustik-haws-llc-0653-90353994

Copeland, T. E., Weston, J. F., & Shastri, K. (2005). Financial Theory and Corporate Policy. Boston, MA: Pearson.

Fama, E. F., & French, K. R. (2004). The Capital Asset Pricing Model: Theory and Evidence. Journal of Economic Perspectives, 18(3), 25–46.

Moneychimp. (2020). Compound annual growth rate (annualized return). http://www.moneychimp.com/features/market_cagr.htm

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13, 341-360.

 

Efficient Markets and Chaos

DJIA1900-2020
Semi-logarithmic plot of historic record of Dow Jones Industrial Average closing values from 1900-2020 plotted against an increasing exponential function to show chaotic oscillations.

18 March 2020 –Equities markets are not a zero-sum game (Fama, 1970). They are specifically designed to provide investors with a means of participating in companies’ business performance either directly through regular cash dividends, or indirectly through a secular increase in the market prices of the companies’ stock. The efficient market hypothesis (EMH), which postulates that stock prices reflect all available information, specifically addresses the stock-price-appreciation channel. EMH has three forms (Klock, & Bacon, 2014):

  • Weak-form EMH refers specifically to predictions based on past-price information;
  • Semi-strong form EMH includes use of all publicly available information;
  • Strong-form EMH includes all information, including private, company-confidential information.

This essay examines equities-market efficiency from the point of view of a model based on chaos theory (Gleick, 2008). The model envisions market-price movements as chaotic fluctuations around an equilibrium value determined by strong-form market efficiency (Chauhan, Chaturvedula, & Iyer, 2014). The next section shows how equities markets work as dynamical systems, and presents evidence that they are also chaotic. The third section describes how dynamical systems work in general. The fourth section shows how dynamical systems become chaotic. The conclusion ties up the argument’s various threads.

Stock-Market Dynamism

Once a stock is sold to the public, it can be traded between various investors at a strike price that is agreed upon ad hoc between buyers and sellers in a secondary market (Hayek, 1945). When one investor decides to sell stock in a given company, it increases the supply of that stock, exerting downward pressure on the strike price. Conversely, when another investor decides to buy that stock, it increases the demand, driving the strike price up. Interestingly, consummating the transaction decreases both supply and demand, and thus has no effect on the strike price. It is the intention to buy or sell the stock that affects the price. The market price is the strike price of the last transaction completed.

Successful firms grow in value over time, which is reflected in secular growth of the market price of their stocks. So, there exists an arbitrage strategy that has a high probability of a significant return: buy and hold. That is, buy equity in a well-run company, and hold it for a significant period of time, then sell. That, of course, is not what is meant by market efficiency (Chauhan, et al, 2014). Efficient market theory specifically concerns itself with returns in excess of such market returns (Fama, 1970).

Of course, if all investors were assured the market price would rise, no owners would be willing to sell, no transactions could occur, and the market would collapse. Similarly, if all investors were assured that the stock’s market price would fall, owners would be anxious to sell, but nobody would be willing to buy. Again, no transactions could occur, and the market would, again, collapse. Markets therefore actually work because of the dynamic tension created by uncertainty as to whether any given stock’s market price will rise or fall in the near future, making equities markets dynamical systems that move constantly (Hayek, 1945).

Fama (1970) concluded that on time scales longer than a day, the EMH appears to work. He found, however, evidence that on shorter time scales it was possible to use past-price information to obtain returns in excess of market returns, violating even weak-form efficiency. He concluded, however, that returns available on such short time scales were insufficient to cover transaction costs, upholding weak-form EMH. Technological improvements since 1970 have, however, drastically reduced costs for high volumes of very-short-timescale transactions, making high-frequency trading profitable (Baron, Brogaard, Hagströmer, & Kirilenko, 2019). Such short-time predictability and long-time unpredictability is a case of sensitive dependence on initial conditions, which Edward Lorentz discovered in 1961 to be one of the hallmarks of chaos (Gleick, 2008). Since 1970, considerable work has been published applying the science of chaotic systems to markets, especially the forex market (Bhattacharya, Bhattacharya, & Roychoudhury, 2017), which operates nearly identically to equities markets.

Dynamic Attraction

Chaos is a property of dynamical systems. Dynamical-systems theory generally concerns itself with the behavior of some quantitative variable representing the motion of a system in a phase space. In the case of a one-dimensional variable, such as the market price of a stock, the phase space is two dimensional, with the variable’s instantaneous value plotted along one axis, and its rate of change plotted along the other (Strogatz, 2015). At any given time, the variable’s value and rate of change determine the location in phase space of a phase point representing the system’s instantaneous state of motion. Over time, the phase point traces out a path, or trajectory, through phase space.

As a simple example illustrating dynamical-system features, take an unbalanced bicycle wheel rotating in a vertical plane (Strogatz, 2015). This system has only one moving part, the wheel. The stable equilibrium position for that system is to have the unbalanced weight hanging down directly below the axle. If the wheel is set rotating, the wheel’s speed increases as the weight approaches its equilibrium position, and decreases as it moves away. If the energy of motion is not too large, the wheel’s speed decreases until it stops, then starts rotating back toward the fixed equilibrium point, then slows again, stops, then rotates back. In the absence of friction, this oscillating motion continues ad infinitum. In phase space, the phase point’s trajectory is an elliptical orbit centered on an attractor located at the unbalanced weight’s equilibrium position and zero velocity. The ellipse’s size (semi-major axis) depends on the amount of energy in the motion. The more energy, the larger the orbit.

If, on the other hand, the wheel’s motion has too much energy, it carries the unbalanced weight over the top (Strogatz, 2015). The wheel then continues rotating in one direction, and the oscillation stops. In phase space, the phase point appears outside some elliptical boundary defined by how much energy it takes to drive the unbalanced weight over the top. That elliptical boundary defines the attractor’s basin of attraction.

Chaotic Attractors

To illustrate how a dynamic system can become chaotic requires a slightly more complicated example. The pitch-control system in an aircraft is particularly apropos equities markets. This system is a feedback control system with two moving parts: the pilot and aircraft (Efremov, Rodchenko, & Boris, 1996). In that system, the oscillation arises from a difference in the speed at which the aircraft reacts to control inputs, and the speed at which the pilot reacts in an effort to correct unintended aircraft movements. The pilot’s response typically lags the aircraft’s movement by a more-or-less fixed time. In such a case, there is always an oscillation frequency at which that time lag equals one oscillation period (i.e., time to complete one cycle). The aircraft’s nose then bobs up and down at that frequency, giving the aircraft a porpoising motion. Should the pilot try to control the porpoising, the oscillation only grows larger because the response still lags the motion by the same amount. This is called pilot induced oscillation (PIO), and it is a major nuisance for all feedback control systems.

PIO relates to stock-market behavior because there is always a lag between market-price movement and any given investor’s reaction to set a price based on it (Baron, Brogaard, Hagströmer, & Kirilenko, 2019). The time lag between intention and consummation of a trade will necessarily represent the period of some PIO-like oscillation. The fact that at any given time there are multiple investors (up to many thousands) driving market-price fluctuations at their own individual oscillation frequencies, determined by their individual reaction-time lags, makes the overall market a chaotic system with many closely spaced oscillation frequencies superposed on each other (Gleick, 2008).

This creates the possibility that a sophisticated arbitrageur may analyze the frequency spectrum of market fluctuations to find an oscillation pattern large enough (because it represents a large enough group of investors) and persistent enough to provide an opportunity for above-market returns using a contrarian strategy (Klock, & Bacon, 2014). Of course, applying the contrarian strategy damps the oscillation. If enough investors apply it, the oscillation disappears, restoring weak-form efficiency.

Conclusion

Basic market theory based on Hayek’s (1945) description assumes there is an equilibrium market price for any given product, which in the equity-market case is a company’s stock (Fama, 1970). Fundamental (i.e., strong-form efficient) considerations determine this equilibrium market price (Chauhan, et al, 2014). The equilibrium price identifies with the attractor of a chaotic system (Gleick, 2008; Strogatz, 2015). Multiple sources showing market fluctuations’ sensitive dependence on initial conditions serve to bolster this identification (Fama, 1970; Baron, Brogaard, et al, 2019; Bhattacharya, et al, 2017). PIO-like oscillations among a large group of investors provide a source for such market fluctuations (Efremov, et al, 1996).

References

Baron, M., Brogaard, J., Hagströmer, B., & Kirilenko, A. (2019). Risk and return in high-frequency trading. Journal of Financial & Quantitative Analysis, 54(3), 993–1024.

Bhattacharya, S. N., Bhattacharya, M., & Roychoudhury, B. (2017). Behavior of the foreign exchange rates of BRICs: Is it chaotic? Journal of Prediction Markets, 11(2), 1–18.

Chauhan, Y., Chaturvedula, C., & Iyer, V. (2014). Insider trading, market efficiency, and regulation. A literature review. Review of Finance & Banking, 6(1), 7–14.

Efremov, A. V., Rodchenko, V. V., & Boris, S. (1996). Investigation of Pilot Induced Oscillation Tendency and Prediction Criteria Development (No. SPC-94-4028). Moscow Inst of Aviation Technology (USSR).

Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383-417.

Farazmand, A. (2003). Chaos and transformation theories: A theoretical analysis with implications for organization theory and public management. Public Organization Review, 3(4), 339-372.

Gleick, J. (2008). Chaos: Making a new science. New York, NY; Penguin Group.

Hayek, F. A. (1945). The use of knowledge in society. American Economic Review, 35(4), 519–530.

Klock, S. A., & Bacon, F. W. (2014). The January effect: A test of market efficiency. Journal of Business & Behavioral Sciences, 26(3), 32–42.

Strogatz, S. H. (2018). Nonlinear dynamics and chaos. Boca Raton, FL: CRC Press.

Fiat Money and the Problem of Foreign Exchange Rates

Money
Money exists as metadata representing equal amounts of credit and debit.

26 February 2020 – This essay is a transcription of a paper I wrote last week as part of my studies for a Doctor of Business Administration (DBA) at Keiser University.

Developing a theory that quantitatively determines the rate of exchange between two fiat currencies has been a problem since the Song dynasty, when China’s Jurchen neighbors to the north figured out that they could emulate China’s Tang-dynasty innovation of printing fiat money on paper (Onge, 2017). With two currencies to exchange, some exchange rate was needed. This essay looks to Song-Dynasty economic history to find reasons why foreign exchange (forex) rates are so notoriously hard to predict. The analytical portion starts from the proposition that money itself is neutral (Patinkin & Steiger, 1989), and incorporates recently introduced ideas about money (de Soto, 2000; Masi, 2019), and concludes in favor of the interest rate approach for forex-rate prediction (Scott Hacker, Karlsson, & Månsson, 2012).

Song-Dynasty Economics

After the introduction of paper money, the Song Chinese quickly ran into the problem of inflation due to activities of rent seekers (Onge, 2017). Rent-seeking is an economics term that refers to attempts to garner income from non-productive activities, and has been around since at least the early days of agriculture (West, 2008). The Greek poet Hesiod complained about it in what has been called the first economics text, Works and Days, in which he said, “It is from work that men are rich in flocks and wealthy … if you work, it will readily come about that a workshy man will envy you as you become wealthy” (p. 46).

Repeated catastrophes arose for the Song Chinese after socialist economist Wang Anshi, prime minister from 1069 to 1076, taught officials that they could float government expenditures by simply cranking up their printing presses to flood the economy with fiat currency (Onge, 2017). Inflation exploded while productivity collapsed. The Jurchens took advantage of the situation by conquering the northern part of China’s empire. After they, too, destroyed their economy by succumbing to Wang’s bad advice, the Mongols came from the west to take over everything and confiscate the remaining wealth of the former Chinese Empire to fund their conquest of Eurasia.

Neutrality of Money

The proposition that money is neutral comes from a comment by John Stuart Mill, who, in 1871, wrote that “The relations of commodities to one another remain unaltered by money” (as cited in Patinkin & Steiger, 1989, p. 239). In other words, if a herdsman pays a farmer 50 cows as bride price for one of the farmer’s daughters, it makes no difference whether those 50 cows are worth 100 gold shekels, or 1,000, the wife is still worth 50 cows! One must always keep this proposition in mind when thinking about foreign exchange rates, and money in general. (Apologies for using a misogynistic example treating women as property, but we’re trying to drive home the difference between a thing and its monetary value.)

Another concept to keep in mind is Hernando de Soto’s (2000) epiphany that a house is just a shelter from the weather until it is secured by a property title. He envisioned that such things as titles inhabit what amounts to a separate universe parallel to the physical universe where the house resides. Borrowing a term from philosophy, one might call this a metaphysical universe made up of metadata that describes objects in the physical universe. de Soto’s idea was that existence of the property-title metadata turns the house into wealth that can become capital through the agency of beneficial ownership.

If one has beneficial ownership of a property title, one can encumber it by, for example, using it to secure a loan. One can then invest the funds derived from that loan into increased productive capacity of a business–back in the physical universe. Thus, the physical house is just an object, whereas the property title is capital (de Soto, 2000). It is the metaphysical capital that is transferable, not the physical property. In the transaction between the farmer and the herdsman above, what occurred was a swap between the two parties of de-Sotoan capital derived from beneficial ownership of the cattle and of the daughter, and it happened in the metaphysical universe.

What Is Money, Really?

Much of the confusion about forex rates arises from conflating capital and money. Masi (2019) speculated that money in circulation (e.g., M1) captures only half of what money really is. Borrowing concepts from both physics and double-entry bookkeeping, he equated money with a two-part conserved quantity he referred to as credit/debit. (Note that here the words “credit” and “debit” are not used strictly according to their bookkeeping definitions.) Credit arises in tandem with creation of an equal amount of debit. Thus, the net amount of money (equaling credit-minus-debit) is always the same: zero. A homeowner raising funds through a home-equity line of credit (HELOC) does not affect his or her total wealth. The transaction creates funds (credit) and debt (debit) in equal amounts. Similarly, a government putting money into circulation, whether by printing pieces of paper, or by making entries in a digital ledger, automatically increases the national debt.

Capital, on the other hand, arises, as de Soto (2000) explained, as metadata associated with property. The confusion comes from the fact that both capital and money are necessarily measured in the same units. While capital can increase through, say, building a house, or it can decrease by, for example, burning a house down, the amount of money (as credit/debit) can never change. It’s always a net zero.

The figure above shows how de Soto’s (2000) and Masi’s (2019) ideas combine. The cycle begins on the physical side with beneficial ownership of some property. On the metaphysical side, that beneficial ownership is represented by capital (i.e., property title). That capital can be used to secure a loan, which creates credit and debit in equal amounts. The beneficial owner is then free to invest the credit in beneficial ownership of a productive business back on the physical side. The business generates profits (e.g., inventory) that the owner retains as an increase in property.

The debit that was created along the way stays on the metaphysical side as an encumbrance on the total capital. The system is limited by the quantity of capital that can be encumbered, which limits the credit that can be created to fund continuing operations. The system grows through productivity of the business, which increases the property that can be represented by new capital, which can be encumbered by additional credit/debit creation, which can then fund more investment, and so forth. Note that the figure ignores, for simplicity, ongoing investment required to maintain the productive assets, and interest payments to service the debt.

Wang’s mismanagement strategy amounted to deficit spending–using a printing press to create credit/debit faster than the economy can generate profit to be turned into an increasing stock of capital (Onge, 2017). Eventually, the debt level rises to encumber the entire capital supply, at which point no new credit/debit can be created. Continued running of Wang’s printing press merely creates more fiat money to chase the same amount of goods: inflation. Thus, inflation arises from having the ratio of money creation divided by capital creation greater than one.

In Song China, investment collapsed due to emphasis on rent seeking, followed by collapsing productivity (Onge, 2017). Hyperinflation set in as the government cranked the printing presses just to cover national-debt service. Finally, hungry outsiders, seeing the situation, swooped in to seize the remaining productive assets. First it was the Jurchens, then the Mongols.

Forex and Hyperinflation

The Song Chinese quickly saw Wang’s mismanagement at work, and kicked him out of office (Onge, 2017). They, however, failed to correct the practices he’d introduced. Onge (2017) pointed out that China’s GDP per person at the start of the Song dynasty was greater than that of 21st-century Great Britain. Under Wang’s policies, decline set in around 1070–80, and GDP per person had fallen by 23% by 1120. Population growth changed to decline. Productivity cratered. Inflation turned to hyperinflation. The Jurchen, without the burden of Wang’s teachings, were slower to inflate their currency.

As Chinese inflation increased relative to that of the Jurchen, exchange rates between Jurchen and Chinese currencies changed rapidly. The Jurchen fiat currency became stronger relative to that of the Chinese. This tale illustrates how changes in forex rates follow relative inflation between currencies, and argues for using the interest rate approach to predict future equilibrium forex rates (Scott Hacker, et al., 2012).

Conclusion

Forex rates are free to fluctuate because money is neutral (Patinkin & Steiger, 1989). Viewing money as a conserved two-fluid metaphysical quantity (Masi, 2019) shows how a country’s supply of de-Sotoan capital constrains the money supply, and shows how an economy grows through profits from productive businesses (de Soto, 2000). It also explains inflation as an attempt to increase the money supply faster than the capital supply can grow. The mismatch of relative inflation affects equilibrium forex rates by increasing strength of one currency relative to another, and argues for the interest-rate approach to forex theory (Scott Hacker, et al., 2012).

References

de Soto, H. (2000). The mystery of capital. New York, NY: Basic Books.

Masi, C. G. (2019, June 19). The Fluidity of Money. [Web log post]. Retrieved from http://cgmblog.com/2019/06/19/the-fluidity-of-money/

Onge, P. S. T. (2017). How paper money led to the Mongol conquest: Money and the collapse of Song China. The Independent Review, 22(2), 223-243.

Patinkin, D., & Steiger, O. (1989). In search of the “veil of money” and the “neutrality of money”: A note on the origin of terms. Scandinavian Journal of Economics, 91(1), 131.

Scott Hacker, R., Karlsson, H. K., & Månsson, K. (2012). The relationship between exchange rates and interest rate differentials: A wavelet approach. World Economy, 35(9), 1162–1185.

West, M. L. [Ed.] (2008). Hesiod: Theogony and works and days. Oxford, UK; Oxford University Press.

You Want Me to Pay You … Why?

Fed Funds Rate goes negative
Negative rates burn wealth! ramcreations/Shutterstock

14 August 2019 – There’s been some hand wringing in the mass media recently about negative interest rates and what they mean. Before you can think about that, however, you have to know what negative rates are and how they actually work. Journalists Sam Goldfarb and Daniel Kruger pointed out in a Wall Street Journal article on Monday (8/12) that not so long ago negative interest rates were thought impossible.

Of course, negative interest rates were never really “impossible.” They used to be considered highly unlikely, however, because nobody in their right mind would be willing to pay someone else for taking money off their hands. I mean, would you do it?

But, the world has changed drastically over the past, say, quarter century. Today, so-called “investors” think nothing of buying stock in giant technology companies, such as Tesla, Inc. that have never made a dime of profit and have no prospects of doing so in the near future. Such “investors” are effectively giving away their money at negative interest rates.

Buying stock in an unprofitable enterprise makes sense if you believe that the enterprise will eventually become profitable. Or, and this is a commonly applied strategy, you believe the market value of the stock will rise in the future, when you can sell it to somebody else at a profit. This latter strategy is known as the “bigger fool theory.” This theory holds that doing something that stupid is a good idea as long as you believe you’ll be able to find a “bigger fool” to take your stock in the deadbeat enterprise off your hands before it collapses into bankruptcy.

That all works quite nicely for stocks, but makes less sense for bonds, which is what folks are talking about when they wring their hands over negative-interest-rate policy by central banks. The difference is that in the bond market, there really is no underlying enterprise ownership that might turn a profit in the future. A bond is just an agreement between a lender and a debtor.

This is where the two-fluid model of money I trotted out in this column on 19 June helps paint an understandable picture. Recall from that column that money appears from nowhere when two parties, a lender and a debtor, execute a loan contract. The cash (known as “credit” in the model) goes to the debtor while an equal amount of debt goes to the lender. Those are the two paired “fluids” that make up what we call “money,” as I explain in that column.

Fed Funds Rate

The Federal Reserve Bank is a system of banks run by the U.S. Treasury Department. One of the system’s functions is to ensure the U.S. money supply by holding excess money for other banks who have more than they need at the moment, and loaning it out to banks in need of cash. By setting the interest rate (the so-called Fed Funds Rate) at which these transactions occur, the Fed controls how much money flows through the economy. Lowering the rate allows money to flow faster. Raising it slows things down.

Actual paper money represents only a tiny fraction of U.S. currency. In actual fact, money is created whenever anybody borrows anything from anybody, even your average loan shark. The Federal Reserve System is how the U.S. Federal Government attempts to keep the whole mess under control.

By the way, the problem with cryptocurrencies is that they attempt to usurp that control, but that’s a rant for another day.

Think of money as blood coursing through the country’s economic body, carrying oxygen to the cells (you and me and General Motors) that they use to create wealth. That’s when the problem with negative interest rates shows up. When interest rates are positive, it means wealth is being created. When they’re negative, well you can imagine what that means!

Negative interest rates mean folks are burning up wealth to keep the economic ship sailing along. If you keep burning up wealth instead of creating it, eventually you go broke. Think Venezuela, or, on a smaller scale, Puerto Rico.

Negative Interest

Okay, so how do negative interest rates actually work?

A loan contract, or bond, is an agreement between a lender and a debtor to create some money (the two fluids, again). The idea behind any contract is that everybody gets something out of it that they want. In a conventional positive-interest-rate bond, the debtor gets credit that they can use to create wealth, like, maybe building a house. The lender gets a share in that wealth in the form of interest payments over and above the cash needed to retire the loan (as in pay back the principal).

Bonds are sold in an auction process. That is, the issuer offers to sell the bond for a face value (the principal) and pay it back plus interest at a certain rate in the future. In the real world, however, folks buy such bonds at a market price, which may or may not be equal to the principal.

If the market price is lower than the principal, then the effective rate of interest will be higher than the offered rate because what the actual market value is doesn’t affect the pay-back terms written on the loan agreement. If the market price is higher than the principal, the effective rate will be lower than the offered rate. If the market price is too much higher than the principal, the repayment won’t be enough to cover it, and the effective rate will be negative.

Everyone who’s ever participated in an auction knows that there are always amateurs around (or supposed professionals whose glands get the better of their brains so they act like amateurs) who get caught up in the auction dynamics and agree to pay more than they should for what’s offered. When it’s a bond auction, that’s how you get a negative interest rate by accident. Folks agree to pay up front more than they get back as principal plus interest for the loan.

Negative Interest Rate Policy (NIRP) is when a central bank (such as the U.S. Federal Reserve) runs out of options to control economic activity, and publicly says it’s going to borrow money from its customers at negative rates. The Fed’s customers (the large banks that deposit their excess cash with the Fed) have to put their excess cash somewhere, so they get stuck making the negative-interest-rate loans. That means they’re burning up the wealth their customers share with them when they pay their loans back.

If you’re the richest country in the world, you can get away with burning up wealth faster than you create it for a very long time. If, on the other hand, you’re, say, Puerto Rico, you can’t.

Measuring Project Success

 

 

Motorcycle ride
What counts as success depends on what your goals are. By Andrey Armyagov/Shutterstock

7 August 2019 – As part of my research into diversity in project teams, I’ve spent about a week digging into how it’s possible to quantify success. Most people equate personal success with income or wealth, and business success with profitability or market capitalization, but none of that really does it. Veteran project managers (like yours truly) recognize that it’s almost never about money. If you do everything else right, money just shows up sometimes. What it’s really all about is all those other things that go into making a success of some project.

So, measuring success is all about quantifying all those other things. Those other things are whatever is important to all the folks that your project affects. We call them stakeholders because they have a stake in the project’s outcome.

For example, some years ago it started becoming obvious to me that the boat tied up to the dock out back was doing me no good because I hardly ever took it out. I knew that I’d get to use a motorcycle every day if I had one, but I had that stupid boat instead. So, I conceived of a project to replace the boat with a motorcycle.

I wasn’t alone, however. Whether we had a boat or a motorcycle would make a difference to my wife, as well. She had a stake in whether we had a boat or a motorcycle, so she was also a stakeholder. It turned out that she would also prefer to have a motorcycle than a boat, so we started working on a project to replace the boat with a motorcycle.

So, the first thing to consider when planning a project is who the stakeholders are. The next thing to consider is what each stakeholder wants to get out of the project. In the case of the motorcycle project, what my wife wanted to get out of it was the fun of riding around southwest Florida visiting this, that and the other place. It turned out that the places she wanted to go were mostly easier to get to by motorcycle than by boat. So, her goal wasn’t just to have the motorcycle, it was to visit places she could get to by motorcycle. For her, getting to visit those places would fulfill her goal for the project.

See? There was no money involved. Only an intangible thing of being able to visit someplace.

The “intangible” part is what hangs people up when they want to quantify the value of something. It’s why people get hung up on money-related goals. Money is something everyone knows how to quantify. How do you quantify the value of “getting to go somewhere?”

A lot of people have tried a lot of schemes for “measuring” the “value” of some intangible thing, like getting where you want to go. It turns out, however, that it’s easy if you change your point of view just a little bit. Instead of asking how valuable it is to get there, you can ask something like: “What are the odds that I can get there?” Getting to some place five miles from the sea by boat likely isn’t going to happen, but getting there by motorcycle might be easy.

The way we quantify this is through what’s called a Likert scale. You make a statement, like “I can get there” and pick a number from, say, zero to five with zero being “It ain’t gonna happen” and five being “Easy k’neezie.”

You do that for all the places you’re likely to want to go and calculate an average score. If you really want to complete the job, you normalize your score by weighting the scores for each destination with how often you’re likely to want to go there, then divide by five times the sum of the weights. That leaves you with an index ranging from zero to one.

You go through this process for all of the goals of all your stakeholders and average the indices to get a composite index. This is an example of how one uses fuzzy logic, which takes into account that most of the time you can’t really be sure of anything. The fuzzy part is using the Likert scale to estimate how likely it is that your fuzzy statement (in this case, “I can get there”) will be true.

When using fuzzy logic to quantify project success, the fuzzy statements are of the form: “Stakeholder X’s goal Y is met.” The value assigned to that statement is the degree to which it is true, or, said another way, the degree to which the goal has been met. That allows for the prospect that not all stakeholder goals will be fully met.

For example, how well my wife’s goal of “Getting to Miromar Outlets in Estero, FL from our place in Naples” would be met depended a whole lot on the characteristics of the motorcycle. If the motorcycle is like the 1988 FLST light-touring bike I used to have, the value would be five. We used to ride that thing all day for weeks at a time! If, on the other hand, it’s like that ol’ 1986 XLH chopper, she might make it, but she wouldn’t be happy at the end (literally ’cause the seat was uncomfortable)! The value in that condition would be one or two. Of course, since Miromar is land locked, the value of keeping the boat would be zero.

So, the steps to quantifying project success are:

  1. Determine all goals of all stakeholders;
  2. Assign a relative importance (weight) to each stakeholder goal;
  3. Use a Likert scale to quantify the degree to which each stakeholder goal has been met;
  4. Normalize the scores to work out an index for each stakeholder goal;
  5. Form a critical success index (CSI) for the project as an average of the indices for the stakeholder goals.

Before you complain about that being an awful lot of math to go through just to figure out how well your project succeeded, recognize that you go through it in a haphazard way every time you do anything. Even if it’s just going to the bathroom, you start out with a goal and finish deciding how well you succeeded. Thinking about these steps just gives you half a chance to reach the correct conclusion.

Misconceptions About Maslow’s Hierarchy of Needs

Maslow's Pyramid
Maslow’s pyramid of needs analyzes human needs and arranges them in a hierarchy. By Shutter_M/Shutterstock

24 July 2019 – Abraham Harold Maslow (1908-1970) was a 20th century psychologist famous for describing human motivation as an hierarchy of needs in a 1943 paper entitled “A Theory of Human Motivation” published in Psychological Review. He was a central figure in the founding of Humanistic Psychology, which concentrates on studying mentally healthy humans.

You have to remember that Maslow did his most important work in the middle of the 20th century. At that time there was great popular interest in the works of Sigmund Freud, who worked with the mentally ill, and B.F. Skinner who mainly studied lower animals. Indeed, the entire arts-and-letters school of Surrealism explicitly drew inspiration from Andre Breton’s interpretation of Freud’s work. Despite (or perhaps because of) this interest in Freud and Skinner’s work, there had been little, if any, study of mentally healthy people.

Humanistic Psychologists felt these earlier studies were of limited value to understanding the healthy human mind. Maslow chose to study the workings of healthy human minds from all social strata, but he was especially interested in studying high achievers. For this reason those of us interested in organizational behavior find his humanists of particular interest. We kinda hope our organizations are populated with, and run by, mentally healthy humans, rather than Freud’s neurotics or Skinner’s lab rats!

Maslow’s emphasis on studying high achievers likely gave rise to the first misconception I want to talk about today: the idea that his work gives cover to elitist views. This elitist theory assumes that everyone strives to reach the self-actualization level at the top of the so-called “Pyramid of Needs” used to illustrate Maslow’s hierarchy, but that only an elite fraction of individuals reach it. Lesser individuals are doomed to wallowing in more squalid existences at lower levels.

The second misconception I want to treat today is a similar notion that people start out at the lower levels and climb slowly up to the top as their incomes rise. This theory substitutes a ladder for the pyramid image to visualize Maslow’s hierarchy. People are imagined to climb slowly up this ladder as both their income and social status increase. This, again, gives cover for elitist views as well as laissez-faire economics.

Maslow’s Conception

What Maslow’s Hierarchy really describes is a priority system that determines what people are motivated to do next. It has little to do with their talents, income or social status. To illustrate what I mean, I like to use the following thought experiment. This thought experiment involves Albert Einstein and it’s particularly appropriate because the Grizzled Genius loved thought experiments.

Albert Einstein’s greatest joy was becoming immersed in translating his imaginings about the physical universe into mathematical equations. This is an example of what Maslow called “peak experiences.” Maslow believed these were periods when self-actualized people (those engaged in satisfying their self-actualization need) are happiest and most productive.

Once in a while, however, Einstein would become hungry. Hunger is, however, one of those pesky physiological needs down at the bottom of Maslow’s Hierarchy. There’s nothing aspirational about hunger. It’s what Fredrick Herzberg called a “hygiene factor” or “demotivator.” Such needs are the opposite of aspirational.

If you’ve got an unsatisfied demotivator need, you become unhappy until you can satisfy it. If, for example, you’re hungry, or have a toothache, or need to pee, it becomes hard to concentrate on anything else. Your only thought is (depending on the nature of the unmet physiological need) to go to the bathroom, or the dentist, or, as in Einstein’s case, go find lunch.

The moral of this story is that people don’t sit somewhere for extended periods of time on a shelf labeled with one of Maslow’s categories. Rich people don’t float in a blissful self-actualizing state. Poor people don’t wallow in a miasma of permanently unmet physiological needs. People constantly move up and down the pyramid depending on what the most pressing unmet need of the moment is.

The hierarchy is therefore actually an inverted priority list. Physiological needs are more important than safety needs. When something frightens you – a safety need – the first thing that happens is you feel an urge to pee to take care of a physiological need to prepare your body for running like a scared rabbit. When you see a fast-moving Chevy bearing down on you, you immediately forget pride in that (esteem level) achievement award you just got.

Elitist Fallacy

A combination of confusion about how Maslow’s heirarchy works and his preference for studying high achievers has led many people to imagine his work gives cover for elitist views. If you’re predisposed to imagine that rich people, smart people, or those of high social status are somehow innately “better” than denizens of what 19th century novelist Edward Bulwer-Lytton called “the great unwashed,” then you’re an elitist. An elitist can derive great comfort by misinterpreting Maslow’s work. You can imagine there being a cadre of elite people destined to spend their lives in some ethereal existence where all lower needs are completely satisfied and life’s only pursuit is self actualization.

The poster child for elitism is 16th century theologian John Calvin. In Calvin’s version of Protestant theology everyone was tainted with original sin and doomed to an eternity in Hell. That was a pretty common view at the time of the Protestant Reformation. Calvin added an elitist element by hypothesizing that there was a limited number of individuals (the elect) whom God had chosen for salvation.

It’s called predestination and those folks got tickets into the elite ranks through no merit of their own. There was nothing anybody could do to beg, borrow, or steal their way in. God decided, while making the Universe in the first place, who was in and who was out based on nothing but His whimsey. (Sexist pronoun used specifically to make a point about Calvinism.)

Of course, the requirements of natural selection logically lead to everyone having a desire to be part of an elite. We all want to be different, like the Dada-esque avant garde group King Missile. That’s how DNA measures its success. Only elite DNA gets to have long-term survival.

So, elitism has a lot of natural appeal. This natural appeal accounts for all kinds of rampant racism and xenophobia. Misunderstanding Maslow’s heirarchy provides a pseudoscientific rationale for elitism. To the elitist, the fact that this view is completely mistaken makes no nevermind.

I hope that by now I have disposed of the elitist fallacy.

Economic Ladder Fallacy

Hoping that I’ve disposed of the idea that Maslow’s work gives cover to elitism, I’ll turn to the fallacy of imagining his hierarchy as an economic ladder. This puppy is a natural outgrowth of the Pyramid of Needs image. The top (self actualization) level of the pyramid is imagined as “higher” than the bottom (physiological) level.

This image actually works from the viewpoint that “lower” needs take precedence over “higher” needs in the same way that a building’s supporting foundation takes precedence over the walls and roof. Without a foundation, there’s nothing to support walls or a roof in the same way that without fulfilling physiological needs, there’s no motivation for, say, self actualization.

Think of it this way: dead people, whose physiological needs are all unmet, hardly ever want to run for President.

So, how do you reach something high? You use a ladder!

That’s the thinking that transforms the Pyramid of Needs into some kind of ladder.

If you’re a strict materialist (and way too many Americans are strict materialists) the “high” you care about reaching is wealth. Folks who haven’t understood last month’s posting entitled “The Fluidity of Money” often confuse income with wealth, so there’s some appeal to thinking about Maslow’s Hierarchy of Needs as a metaphor for income levels. That completes the economic-ladder fallacy.

With this fallacy, folks imagine that everyone starts out at the bottom of the ladder and, with time, hard work and luck, climbs their way to the top. There are obvious problems matching income levels with needs levels, but if you’re sufficiently intellectually lazy, you can unfocus your mind’s eye enough to render these problems invisible.

I especially get a kick out of efforts to use the idea of Engel curves (from economics) to make this ladder fallacy work. Engel curves map the desireability (measured as the demand side of the economics law of supply and demand) of a given good or product against a given consumer’s income level. If the good in question is, for example, a used Mazda Miata, the desirability may be high when the consumer has a low-to-moderate income, but low if that particular consumer has enough income to pay for a new Ferrari SF90 Stradale. If you want to, it is obvious you can somehow conflate Engel curves with the ladder idea of Maslow’s Heirarchy of Needs.

The problem with this thinking is, first, that the Ladder doesn’t make a lot of sense as a visualization for Maslow’s Heirarchy, since the latter is formost a priority-setting scheme; second, that Maslow’s Hierarchy has little connection to income; and, third, that Engel curves present an incomplete view of what makes a product desirable.

The elitist fallacy and the economic-ladder fallacy are not the only fallacies people, with their infinite capacity to generate cockamamie theories, can concoct in connection to Maslow’s work. They are just two that have come up recently in articles I’ve had occasion to read. I think analyzing them can also help clarify how the Hierarchy of Needs applies to understanding human behavior.

Besides, I’ve had a bit of fun knocking them around, and I hope you have, too.

The Fluidity of Money

Money exchange
Money is created in the exchange of credit for debt. Image by bluedog studio/shutterstock

19 June 2016 – I’m supposed to have some passing understanding of economics and accounting. I have, after all, a Master’s degree in Business Administration, for which I had to study Macroeconomics and Microeconomics, as well as Cost and Financial Accounting.

Howsomever, while trying to make sense of what folks call “Modern Monetary Theory” it dawned on me that, not only didn’t I have a clear concept of what money actually is, but the people babbling on about money and monetary policy aren’t any clearer on the concept than I am. A review of the differences between neoclassical economics based on Keynsian ideas and so-called Modern Monetary Theory reveals an incomplete understanding of money.

We all think we know what money is, and spout long winded and erudite-sounding loads of gobbledygook that only serve to prove, beyond a shadow of a doubt, that none of us have a clue what the stuff actually is!

I find that situation intolerable, and have set out to change it by trying real hard to come up with a theory that makes sense of all the stupid things we do with and say about money.

Now, I’m not a financial wizard, or a prize-winning economist, or even a whiz-bang developer of computer models of the global economy. I’m just some schmuck with some basic math ability, a little time on my hands, and the desire to make sense of something that it seems the “experts” haven’t wrapped their brains around, yet. So, I’ve thought about this problem a bit, and have a hint of an answer that I want to run up the flagpole to see if anyone salutes.

If this essay triggers something in the brain of somebody smart that sets him, her or it thinking in a new direction about money, I’ll count it time well spent.

So, here goes … .

In science, we try to make sense of anything we don’t fully comprehend by developing some kind of conceptual model that helps us predict what will happen in any given situation. The fact that we currently haven’t a clue what will actually happen when, for example, the Federal Government runs up huge deficits for a very long time, indicates that we’re very far from knowing what we’re talking about with regard to money.

I generally try to model things poorly understood through analogy with things that are well understood. I’ve developed a two-fluid model of money by analogy to certain ideas in classical physics. It seems to work decently for the situations I’ve applied it to.

Analogy with Momentum

Specifically, the model draws an analogy with Newtonian momentum, which is a conserved vector quantity – meaning that the total momentum in a closed system cannot be changed, and that the quantity involves both a magnitude and a spatial direction.

For our analogy to be useful, we need to also use the idea of generalized coordinates, which allow the idea of “direction” to extend beyond strictly cartesian spatial coordinates (motion in straight lines). For example, a bicycle drive chain wraps around two sprockets and has flexible spans linking them, so its motion certainly does not follow along a single cartesian coordinate, yet there is a well-defined path along which any two points on the chain follow each other, maintaining their separation (measured along the path). That allows us to measure motion along the path by a generalized coordinate.

In Newtonian mechanics, momentum is exchanged between objects, which are thought of as components of a system, through the action of forces. Mathematically, the magnitude and direction of the force equals the rate of flow of momentum between the objects.

Newton’s third law, which states that every force is paired with an equal and opposite reaction force, is just an expression of conservation of momentum in that every force (representing a transfer of momentum from one object to another) is paired with an equal and opposite transfer of momentum from the second object to the first. This takes care of maintaining conservation of momentum.

Take, for example, a person stepping off a boat onto a dock. At first, everything is (as seen from the perspective of the dock) stationary. The momentum of an object is defined as the object’s mass (amount of material) times its velocity (a vector combining speed and direction). Since both the person and the boat are stationary (meaning they both have a velocity of zero), the total momentum of the system of person + boat is zero.

Then, the person applies a force to the boat in a direction away from the dock. The Newton’s-third-law reaction force is a push by the boat on the person toward the dock. That’s how the person actually gets to the dock. The boat pushes him/her toward it!

The boat moves away from the dock. The person moves toward the dock. So, the directions of the two momenta are opposite. The speeds of the person and boat automatically (or maybe you’d like to say “magically”) adjust to keep the total momentum of the system equal to zero at all times. That is, at every instant the momentum of the person is equal and opposite to the momentum of the boat.

Money

In the theory of money that I’m proposing, money itself is analogous to momentum. Altogether, it’s conserved. That is, it cannot be created or destroyed. There’s always the same amount of “money” – zero!

What we’re used to thinking of as “money” is only half the story, which is why there’s so much confusion over it. Borrowing from double-entry bookkeeping, we’ll call what we usually think of as money as credit. Everyone who understands double-entry bookkeeping knows that for every credit, there is an equal (and opposite) entry called a debit. For our purposes, we’ll shorten that word to something we’re all familiar with: debt.

Debt is the other side of the analogy, which we tend to ignore and that accounts for all the confusion.

We’re going to visualize credit and debt as fluids because they’re measured as continuous, as opposed to quantized, variables. That means that they’re representable by real numbers as opposed to integers. So, nobody has a problem with dividing seven dollars ($7) into two portions each containing three and a half dollars ($3.50). Current usage is to round everything to the nearest cent, or hundredth of a dollar, but that’s for convenience and not wanting to be bothered with truly small change.

At one time, we had half-penny ($0.005) coins, but we don’t do that anymore.

Okay, so “money” actually represents credit and debt in equal amounts, which consequently always add up to zero. Whenever money is created, it’s created as equal amounts of credit and debt.

Money creation always requires activity by two cooperating entities: a creditor and a debtor. Credit is created and transferred from the creditor to the debtor. An equal quantity of debt is created and flows from the debtor to the creditor. “Money” consists of these paired fluids, which flow through the economy via paired interactions between creditors and debtors. Money is created by an interaction that creates equal amounts of credit and debt, and the words “creditor” and “debtor” simply indicate the direction of flow.

Once created, the money flows around in the economy through paired transactions in which credit flows one way and debt the other.

Wealth

This visualization allows us to separate the concepts of “money” and “wealth.” Wealth refers to tangible and intangible assets, such as commodities and intellectual property. Wealth is very definitely not conserved. When a contractor builds a house, he or she creates wealth from, essentially, nothing. The contractor then sells the house to the new owner in a binary transaction that transfers credit to the contractor and debt to the owner.

We’ll leave out discussion of what happens to the wealth represented by the house, since this essay is about money, and money is not wealth.

The owner previously got the credit through a transaction with a lender in which money was created as a transfer of credit to the owner and debt to the lender. The lender can then, for example, package the debt up into something called a “collateralized debt obligation,” and exchange it with somebody else for an equivalent amount of credit. The lender then transfers that credit to another prospective home owner in exchange for an equivalent amount of debt, and the merry-go-round keeps turning.

Unlike wealth, which was created from nothing, the total of credit minus debt in the system remains zero at all times.

It is interesting to note that wealth appears through the creation of a pattern in the physical universe. For example, bricks used by a contractor to build a house start out as a less-organized pile. The contractor creates wealth by arranging those bricks in a house-like pattern. The owner has no use for the disorganized pile of bricks, but has a use for them when arranged as a house. Similarly, the contractor had no use for the raw clay that went into the bricks until the brick manufacturer rearranged it into the pattern we call “bricks.”

Historically, folks’ fascination with the credit side of money has led them to confuse “money” with “wealth.” They’re entirely different things. One is a medium of exchange related to entries in a bookkeeper’s ledger, the other is a real thing related to patterns in the physical world.

I hope this essay manages to help make sense of the money nonsense!

Stick to Your Knitting

Man knitting
Man in suit sticking to his knitting. Photo by fokusgood / Shutterstock

6 June 2019 – Once upon a time in an MBA school far, far away, I took a Marketing 101 class. The instructor, whose name I can no longer be sure of, had a number of sayings that proved insightful, bordering on the oracular. (That means they were generally really good advice.) One that he elevated to the level of a mantra was: “Stick to the knitting.”

Really successful companies of all sizes hew to this advice. There have been periods of history where fast-growing companies run by CEOs with spectacularly big egos have equally spectacularly honored this mantra in the breach. With more hubris than brains, they’ve managed to over-invest themselves out of business.

Today’s tech industry – especially the FAANG companies (Facebook, Amazon, Apple, Netflix and Google) – is particularly prone to this mistake. Here I hope to concentrate on what the mantra means, and what goes wrong when you ignore it.

Okay, “stick to your knitting” is based on the obvious assumption that every company has some core expertise. Amazon, for example, has expertise in building and operating an online catalog store. Facebook has expertise in running an online forum. Netflix operates a bang-up streaming service. Ford builds trucks. Lockheed Martin makes state-of-the-art military airplanes.

General Electric, which has core expertise in manufacturing industrial equipment, got into real trouble when it got the bright idea of starting a finance company to extend loans to its customers for purchases of its equipment.

Conglomeration

There is a business model, called the conglomerate that is based on explicitly ignoring the “knitting” mantra. It was especially popular in the 1960s. Corporate managers imagined that conglomerates could bring into play synergies that would make conglomerates more effective than single-business companies.

For a while there, this model seemed to be working. However, when business conditions began to change (specifically interest rates began to rise from an abnormally low level to more normal rates) their supposed advantages began melting like a birthday cake left outside in a rainstorm. These huge conglomerates began hemorrhaging money until vultures swooped in to pick them apart. Conglomerates are now a thing of the past.

There are companies, such as Berkshire Hathaway, whose core expertise is in evaluating and investing in other companies. Some of them are very successful, but that’s because they stick to their core expertise.

Berkshire Hathaway was originally a textile company that investor Warren Buffett took over when the textile industry was busy going overseas. As time went on, textiles became less important and, by 1985 this core part of the company was shut down. It had become a holding company for Buffett’s investments in other companies. It turns out that Buffett’s core competence is in handicapping companies for investment potential. That’s his knitting!

The difference between a holding company and a conglomerate is (and this is specifically my interpretation) a matter of integration. In a conglomerate, the different businesses are more-or-less integrated into the parent corporation. In a holding company, they are not.

Berkshire Hathaway is known for it’s insurance business, but if you want to buy, say, auto insurance from Berkshire Hathaway, you have to go to it’s Government Employees Insurance Company (GEICO) subsidiary. GEICO is a separate company that happens to be wholly owned by Berkshire Hathaway. That is, it has its own corporate headquarters and all the staff, fixtures and other resources needed to operate as an independent insurance company. It just happens to be owned, lock, stock and intellectual property by another corporate entity: Berkshire Hathaway.

GEICO’s core expertise is insurance. Berkshire Hathaway’s core expertise is finding good companies to invest in. Some are partially owned (e.g., 5.4% of Apple) some are wholly owned (e.g., Acme Brick).

Despite Berkshire Hathaway’s holding positions in both Apple and Acme Brick, if you ask Warren Buffet if Berkshire Hathaway is a computer company or a brick company, he’d undoubtedly say “no.” Berkshire Hathaway is a diversified holding company.

It’s business is owning other businesses.

To paraphrase James Coburn’s line from Stanley Donen’s 1963 film Charade: “[Mrs. Buffett] didn’t raise no stupid children!”

Why Giant Corporations?

All this giant corporation stuff stems from a dynamic I also learned about in MBA school: a company grows or it dies. I ran across this dynamic during a financial modeling class where we used computers to predict results of corporate decisions in lifelike conditions. Basically, what happens is that unless the company strives to its utmost to maintain growth, it starts to shrink and then all is lost. Feedback effects take over and it withers and dies.

Observations since then have convinced me this is some kind of natural law. It shows up in all kinds of natural systems. I used to think I understood why, but I’m not so sure anymore. It may have something to do with chaos, and we live in a chaotic universe. I resolve to study this in more detail – later.

But, anyway … .

Companies that embrace this mantra (You grow or you die.) grow until they reach some kind of external limit, then they stop growing and – in some fashion or other – die.

Sometimes (and paradigm examples abound) external limits don’t kick in before some company becomes very big, indeed. Standard Oil Company may be the poster child for this effect. Basically, the company grew to monopoly status and, in 1911 the U.S. Federal Government stepped in and, using the 1890 Sherman Anti-Trust Act, forced its breakup into 33 smaller oil companies, many of which still exist today as some of the world’s major oil companies (e.g., Mobil, Amoco, and Chevron). At the time of its breakup, Standard Oil had a market capitalization of just under $11B and was the third most valuable company in the U.S. Compare that to the U.S. GDP of roughly $34B at the time.

The problem with companies that big is that they generate tons of free cash. What to do with it?

There are three possibilities:

  1. You can reinvest it in your company;

  2. You can return it to your shareholders; or

  3. You can give it away.

Reinvesting free cash in your company is usually the first choice. I say it is the first choice because it is used at the earliest period of the company’s history – the period when growth is necessarily the only goal.

If done properly reinvestment can make your company grow bigger faster. You can reinvest by out-marketing your competition (by, say, making better advertisements) and gobbling up market share. You can also reinvest to make your company’s operations more effective or efficient. To grow, you also need to invest in adding production facilities.

At a later stage, your company is already growing fast and you’ve got state-of-the-art facilities, and you dominate your market. It’s time to do what your investors gave you their money for in the first place: return profits to them in the form of dividends. I kinda like that. It’s what the game’s all about, anyway.

Finally, most leaders of large companies recognize that having a lot of free cash laying around is an opportunity to do some good without (obviously) expecting a payback. I qualify this with the word “obviously” because on some level altruism does provide a return in some form.

Generally, companies engage in altruism (currently more often called “philanthropy”) to enhance their perception by the public. That’s useful when lawsuits rear their ugly heads or somebody in the organization screws up badly enough to invite public censure. Companies can enhance their reputations by supporting industry activities that do not directly enhance their profits.

So-called “growth companies,” however, get stuck in that early growth phase, and never transition to paying dividends. In the early days of the personal-computer revolution, tech companies prided themselves on being “growth stocks.” That is, investors gained vast wealth on paper as the companies’ stock prices went up, but couldn’t realized those gains (capital gains) unless they sold the stock. Or, as my father once did, by using the stock for collateral to borrow money.

In the end, wise investors eventually want their money back in the form of cash from dividends. For example, in the early 2000s, Microsoft and other technology companies were forced by their shareholders to start paying dividends for the first time.

What can go wrong

So, after all’s said and done, why’s my marketing professor’s mantra wise corporate governance?

To make money, especially the scads of money that corporations need to become really successful, you’ve gotta do something right. In fact, you gotta do something better than the other guys. When you know how to do something better than the other guys, that’s called expertise!

Companies, like people, have limitations. To imagine you don’t have limitations is hubris. To put hubris in perspective, recall that the ancients famously made it Lucifer’s cardinal sin. In fact, it was his only sin!

Folks who tell you that you can do anything are flat out conning your socks off.

If you’re lucky you can do one thing better than others. If you’re really lucky, you can do a few things better than others. If you try to do stuff outside your expertise, however, you’re gonna fail. A person can pick themselves up, dust themselves off, and try again – but don’t try to do the same thing again ‘cause you’ve already proved it’s outside your expertise. People can start over, but companies usually can’t.

One of my favorite sayings is:

Everything looks easy to someone who doesn’t know what they’re doing.

The rank amateur at some activity typically doesn’t know the complexities and pitfalls that an expert in the field has learned about through training and experience. That’s what we know as expertise. When anyone – or any company – wanders outside their field of expertise, they quickly fall foul of those complexities and pitfalls.

I don’t know how many times I’ve overheard some jamoke at an art opening say, “Oh, I could do that!”

Yeah? Then do it!

The artist has actually done it.

The same goes for some computer engineer who imagines that knowing how to program computers makes him (or her) smart, and because (s)he is so smart, (s)he could run, say, a magazine publishing house. How hard can it be?

Mark Zuckerberg is in the process of finding out.

Fed Reports on U.S. Economic Well-Being

Federal Reserve Building
The Federal Reserve released the results of its annual Survey of Household Economics and Decisionmaking for calendar year 2018 last week. Image by Thomas Barrat / Shutterstock

29 May 2019 – Last week (specifically 23 May 2019) the Federal Reserve Board released the results of its annual Survey of Household Economics and Decisionmaking for CY2018. I’ve done two things for readers of this blog. First, I downloaded a PDF copy of the report to make available free of charge on my website at cgmasi.com alongside last year’s report for comparison. Second, I’m publishing an edited extract of the report’s executive summary below.

The report describes the results of the sixth annual Survey of Household Economics and Decisionmaking (SHED). In October and November 2018, the latest SHED polled a self-selected sample of over 11,000 individuals via an online survey.

Along with the survey-results report, the Board published the complete anonymized data in CSV, SAS, STATA formats; as well as a supplement containing the complete SHED questionnaire and responses to all questions in the order asked. The survey continues to use subjective measures and self-assessments to supplement and enhance objective measures.

Overall Results

Survey respondents reported that most measures of economic well-being and financial resilience in 2018 are similar to or slightly better than in 2017. Many families have experienced substantial gains since the survey began in 2013, in line with the nation’s ongoing economic expansion during that period.

Even so, another year of economic expansion and the low national unemployment rates did little to narrow the persistent economic disparities by race, education, and geography. Many adults are financially vulnerable and would have difficulty handling an emergency expense as small as $400.

In addition to asking adults whether they are working, the survey asks if they want to work more and what impediments they see to them working.

Overall Economic Well-Being

A large majority of individuals report that, financially, they are doing okay or living comfortably, and overall economic well-being has improved substantially since the survey began in 2013

  • When asked about their finances, 75% of adults say they are either doing okay or living comfortably. This result in 2018 is similar to 2017 and is 12%age points higher than 2013.

  • Adults with a bachelor’s degree or higher are significantly more likely to be doing at least okay financially (87%) than those with a high school degree or less (64%).

  • Nearly 8 in 10 whites are at least doing okay financially in 2018 versus two-thirds of blacks and Hispanics. The gaps in economic well-being by race and ethnicity have persisted even as overall wellbeing has improved since 2013.

  • Fifty-six percent of adults say they are better off than their parents were at the same age and one fifth say they are worse off.

  • Nearly two-thirds of respondents rate their local economic conditions as “good” or “excellent,” with the rest rating conditions as “poor” or “only fair.” More than half of adults living in rural areas describe their local economy as good or excellent, compared to two-thirds of those living in urban areas.

Income

Changes in family income from month to month remain a source of financial strain for some individuals.

  • Three in 10 adults have family income that varies from month to month. One in 10 adults have struggled to pay their bills because of monthly changes in income. Those with less access to credit are much more likely to report financial hardship due to income volatility.

  • One in 10 adults, and over one-quarter of young adults under age 30, receive some form of financial support from someone living outside their home. This financial support is mainly between parents and adult children and is often to help with general expenses.

Employment

Most adults are working as much as they want to, an indicator of full employment; however, some remain unemployed or underemployed. Economic well-being is lower for those wanting to work more, those with unpredictable work schedules, and those who rely on gig activities as a main source of income.

  • One in 10 adults are not working and want to work, though many are not actively looking for work. Four percent of adults in the SHED are not working, want to work, and applied for a job in the prior 12 months. This is similar to the official unemployment rate of 3.8% in the fourth quarter of 2018.

  • Two in 10 adults are working but say they want to work more. Blacks, Hispanics, and those with less education are less likely to be satisfied with how much they are working.

  • Half of all employees received a raise or promotion in the prior year.

  • Unpredictable work schedules are associated with financial stress for some. One-quarter of employees have a varying work schedule, including 17% whose schedule varies based on their employer’s needs. One-third of workers who do not control their schedule are not doing okay financially, versus one-fifth of workers who set their schedule or have stable hours.

  • Three in 10 adults engaged in at least one gig activity in the prior month, with a median time spent on gig work of five hours. Perhaps surprisingly, little of this activity relies on technology: 3% of all adults say that they use a website or an app to arrange gig work.

  • Signs of financial fragility – such as difficulty handling an emergency expense – are slightly more common for those engaged in gig work, but markedly higher for those who do so as a main source of income.

Dealing with Unexpected Expenses

While self-reported ability to handle unexpected expenses has improved substantially since the survey began in 2013, a sizeable share of adults nonetheless say that they would have some difficulty with a modest unexpected expense.

  • If faced with an unexpected expense of $400, 61% of adults say they would cover it with cash, savings, or a credit card paid off at the next statement – a modest improvement from the prior year. Similar to the prior year, 27% would borrow or sell something to pay for the expense, and 12% would not be able to cover the expense at all.

  • Seventeen percent of adults are not able to pay all of their current month’s bills in full. Another 12% of adults would be unable to pay their current month’s bills if they also had an unexpected $400 expense that they had to pay.

  • One-fifth of adults had major, unexpected medical bills to pay in the prior year. One-fourth of adults skipped necessary medical care in 2018 because they were unable to afford the cost.

Banking and Credit

Most adults have a bank account and are able to obtain credit from mainstream sources. However, sub- stantial gaps in banking and credit services exist among minorities and those with low incomes.

  • Six percent of adults do not have a bank account. Fourteen percent of blacks and 11% of Hispanics are unbanked versus 4% of whites. Thirty-five percent of blacks and 23% of Hispanics have an account but also use alternative financial services, such as money orders and check cashing services, compared to 11% of whites.

  • More than one-fourth of blacks are not confident that a new credit card application would be approved if they applied—over twice the rate among whites.

  • Those who never carry a credit card balance are much more likely to say that they would pay an unexpected $400 expense with cash or its equivalent (88%) than those who carry a balance most or all of the time (40%) or who do not have a credit card (27%).

  • Thirteen percent of adults with a bank account had at least one problem accessing funds in their account in the prior year. Problems with a bank website or mobile app (7%) and delays in when funds were available to use (6%) are the most common problems. Those with volatile income and low savings are more likely to experience such problems.

Housing and Neighborhoods

Satisfaction with one’s housing and neighborhood is generally high, although notably less so in low-income communities. While 8 in 10 adults living in middle- and upper-income neighborhoods are satisfied with the overall quality of their community, 6 in 10 living in low- and moderate-income neighborhoods are satisfied.

  • People’s satisfaction with their housing does not vary much between more expensive and less expensive cities or between urban and rural areas.

  • Over half of renters needed a repair at some point in the prior year, and 15% of renters had moderate or substantial difficulty getting their landlord to complete the repair. Black and Hispanic renters are more likely than whites to have difficulties getting repairs done.

  • Three percent of non-homeowners were evicted, or moved because of the threat of eviction, in the prior two years. Evictions are slightly more common in urban areas than in rural areas.

Higher Education

Economic well-being rises with education, and most of those holding a post-secondary degree think that attending college paid off.

  • Two-thirds of graduates with a bachelor’s degree or more feel that their educational investment paid off financially, but 3 in 10 of those who started but did not complete a degree share this view.

  • Among young adults who attended college, more than twice as many Hispanics went to a for-profit institution as did whites. For young black attendees, this rate was five times the rate of whites.

  • Given what they know now, half of those who attended a private for-profit institution say that they would attend a different school if they had a chance to go back and make their college choices again. By comparison, about one-quarter of those who attended public or private not-for-profit institutions would want to attend a different school.

Student Loans and Other Education Debt

Over half of young adults who attended college took on some debt to pay for their education. Most borrowers are current on their payments or have successfully paid off their loans.

  • Among those making payments on their student loans, the typical monthly payment is between $200 and $299 per month.

  • Over one-fifth of borrowers who attended private for-profit institutions are behind on student loan payments, versus 8% who attended public institutions and 5% who attended private not-for-profit institutions.

Retirement

Many adults are struggling to save for retirement. Even among those who have some savings, people commonly lack financial knowledge and are uncomfortable making investment decisions.

  • Thirty-six percent of non-retired adults think that their retirement saving is on track, but one-quarter have no retirement savings or pension whatsoever. Among non-retired adults over the age of sixty, 45% believe that their retirement saving is on track.

  • Six in 10 non-retirees who hold self-directed retirement savings accounts, such as a 401(k) or IRA, have little or no comfort in managing their investments.

  • On average, people answer fewer than three out of five financial literacy questions correctly, with lower scores among those who are less comfortable managing their retirement savings.

The forgoing is an edited extract from the Report’s Executive Summary. A PDF version of the entire report is available on my website at cgmasi.com [ http://cgmasi.com ] along with a PDF version of the 2017 report, which was published in May of 2018 and based on a similar survey conducted in late 2017. Reports dating back to the first survey done in late 2013 are available from the Federal Reserve Board’s website linked to above.

Why Target Average Inflation?

Federal Reserve Seal
The FOMC attempts to control economic expansion by managing interest rates. Shutterstock.com

8 May 2019 – There’s been a bit of noise in financial-media circles this week (as of this writing, but it’ll be last week when you get to read it) about Federal Reserve Chairman Jerome Powell’s talking up shifting the Fed’s focus to targeting something called “average inflation” and using words like “transient” and “symmetric” to describe this thinking. James Macintosh provided a nice layman-centric description of the pros and cons of this concept in his “Streetwise” column in Friday’s (5/3) The Wall Street Journal. (Sorry, folks, but this article is only available to WSJ subscribers, so the link above leads to a teaser that asks you to either sign in as a current subscriber or to become a new subscriber. And, you thought information was supposed to be distributed for free? Think again!)

I’m not going to rehash what Macintosh wrote, but attempt to show why this change makes sense. In fact, it’s not really a change at all, but an acknowledgement of what’s really been going on all the time.

We start with pointing out that what the Federal Reserve System is mandated to do is to control the U.S. economy. The operant word here is “control.” That means that to understand what the Fed does (and what it should do) requires a basic understanding of control theory.

Basic Control Theory

We’ll start with a thermostat.

A lot of people (I hesitate to say “most” because I’ve encountered so many counter examples – otherwise intelligent people who somehow don’t seem to get the point) understand how a thermostat works.

A thermostat is the poster child for basic automated control systems. It’s the “stone knives and bearskins” version of automated controls, and is the easiest for the layman to understand, so that’s where we’ll start. It’s also a good analog for what has passed for economic controls since the Fed was created in 1913.

Okay, the first thing to understand is the concept of a “set point.” That’s a “desired value” of some measurement that represents the thing you want to control. In the case of the thermostat, the measurement is room temperature (as read out from a thermometer) and the thing you’re trying to control is how comfortable the room air feels to you. In the case of the Fed, the thing you want to control is overall economic performance and the measurement folks decided was most useful is the inflation rate.

Currently, the set point for inflation is 2% per annum.

In the case of the thermostat in our condo, my wife and I have settled on 75º F. That’s a choice we’ve made based on the climate where we live (Southwestern Florida), our ages, and what we, through experience, have found to be most comfortable for us right now. When we lived in New England, we chose a different set point. Similarly, when we lived in Northern Arizona it was different as well.

The bottom line is: the set point is a matter of choice based on a whole raft of factors that we think are important to us and it varies from time to time.

The same goes for the Fed’s inflation set point. It’s a choice Fed governors make based on a whole raft of considerations that they think are important to the country right now. One of the reasons they meet every month is to review that target ‘cause they know that things change. What seems like a good idea in July, might not look so good in August.

Now, it’s important to recognize that the set point is a target. Like any target, you’re trying to hit it, but you don’t really expect to hit it exactly. You really expect that the value you get for your performance measurement will differ from your set point by some amount – by some error or what metrologists prefer to call “deviation.” We prefer deviation to the word error because it has less pejorative connotations. It’s a fact of life, not a bad thing.

When we add in the concept of time, we also introduce the concept of feedback. That is what control theorists call it when you take the results of your measurement and feed it back to your decision of what to do next.

What you do next to control whatever you’re trying to control depends, first, on the sign (positive or negative) of the deviation, and, in more sophisticated controls, it’s value or magnitude. In the case of the thermostat, if the deviation is positive (meaning the room is hotter than you want) you want to do something to cool it down. In the case of the economy, if inflation is too high you want to do something to reduce economic activity so you don’t get an economic bubble that’ll soon burst.

What confuses some presidents is the idea that rising economic activity isn’t always good. Presidents like boom times ‘cause they make people feel good – like a sugar high. Populist presidents typically fail to recognize (or care about the fact) that booms are invariably bubbles that burst disastrously. Just ask the people of Venezuela who watched their economy’s inflation rate suddenly shoot up to about a million(!) percent per annum.

Booms turn to busts in a heartbeat!

This is where we want to abandon the analogy with a thermostat and get a little more sophisticated.

A thermostat is a blunt instrument. What the thermostat automatically does next is like using a club. At best, a thermostat has two clubs to choose from: it can either fire up the furnace (to raise the room temperature in the event of a negative deviation) or kick in the air conditioner (in the event that the deviation is positive – too hot). That’s known as a binary digital control. It’s gives you a digital choice: up or down.

We leave the thermostat analogy because the Fed’s main tool for controlling the economy (the Fed-funds interest rate) is a lot more sophisticated. It’s what mathematicians call analog. That is, instead of providing a binary choice (to use the club or not), it lets you choose how much pressure you want to apply up or down.

Quantitative easing similarly provides analog control, so what I’m going to say below also applies to it.

Okay, the Fed’s control lever (Fed funds interest rate) is more like a brake pedal than a club. In a car, the harder you press the brake pedal, the more pressure you apply to make the car slow down. A little pressure makes the car slow down a little. A lot of pressure makes the car slow down a lot.

So, you can see why authoritarians like low interest rates. Autthoritarians generally have high-D personalities. As Personality Insights says: “They tend to know 2 speeds in life – zero and full throttle… mostly full throttle.”

They generally don’t have much use for brakes!

By the way, the thing governments have that corresponds to a gas pedal is deficit spending, but the correspondence isn’t exact and the Fed can’t control it, anyway. Since this article is about the Fed, we aren’t going to talk about it now.

When inflation’s moving too fast (above the set point) by a little, the Fed governors – being the feedback controller – decide to raise the Fed funds rate, which is analogous to pushing the brake pedal, by a little. If that doesn’t work, they push it a little harder. If inflation seems to be out of control, as it did in the 1970s, they push it as hard as they can, boosting interest rates way up and pulling way back on the economy.

Populist dictators, who generally don’t know what they’re doing, try to prevent their central banks (you can’t have an economy without having a central bank, even if you don’t know you have it) from raising interest rates soon enough or high enough to get inflation under control, which is why populist dictatorships generally end up with hyperinflation leading to economic collapse.

Populist Dictators Need Not Apply

This is why we don’t want the U.S. Federal Reserve Bank under political control. Politicians are not elected for their economic savvy, so we want Fed governors, who are supposed to have economic savvy, to make smart decisions based on their understanding of economic causes and effects, rather than dumb decisions based on political expediency.

Economists are mathematically sophisticated people. They may (or may not) be steeped in the theory of automated control systems, but they’re quite capable of understanding these basics and how they apply to controlling an economy.

Economics, of course, has been around as long as civilization. Hesiod (ca. 750 BCE) is sometimes considered “the first economist.” Contemporary economics traces back to the eighteenth century with Adam Smith. Control theory, on the other hand, has only been elucidated since the early 1950s. So, you don’t really need control theory to understand economics. It just makes it easier to see how the controls work.

To a veteran test and measurement maven like myself, the idea of thinking in terms of average inflation, instead of the observed inflation at some point in time – like right now – makes perfect sense. We know that every time you make a measurement of anything, you’re almost guaranteed to get a different value than you got the last time you measured it. That’s why we (scientists and engineers) always measure whatever we care about multiple times and pay attention to the average of the measurements instead of each measurement individually.

So, Fed governors starting to pay attention to average inflation strikes us as a duh! What else would you look at?

Similarly, using words like “transient” and “symmetric” make perfect sense because “transient” expresses the idea that things change faster than you can measure them and “symmetric” expresses the idea that measurement variations can be positive or negative – symmetric each side of the average.

These ideas all come from the mathematics of statistics. You’ve heard of “statistical significance” associated with polling data, or two polling results being within “statistical error.” The variations I’m talking about are the same thing. Variations between two values (like the average inflation and the target inflation) are statistically significant if they’re sufficiently outside the statistical error.

I’m not going to go into how you calculate a value for statistical error because it takes hours of yammering to teach it in statistics classes, and I just don’t have the space here. You wouldn’t want to read it right now, anyway. Suffice it to say that it’s a well-defined concept relating to how much variation you can expect in a given data set.

While the control theory I’ve been talking about applies especially to automated control systems, it applies equally to Federal Reserve System control of economic performance – if you put the Federal Open Market Committee (FOMC) in place of the control computer that makes decisions for the automated control system.

So,” you ask, “why not put the Fed-funds rate under computer control?”.

The reason it would be unreasonable to fully automate the Fed’s actions is that we can’t duplicate the thinking process of the Fed governors in a computer program. The state of the art of economic models is just not good enough, yet. We still need the gut feelings of seasoned economists to make enough sense out of what goes on in the economy to figure out what to do next.

That, by the way, is why we don’t leave the decisions up to some hyperintelligent pandimensional being (named Trump). We need a panel of economists with diverse backgrounds and experiences – the FOMC – to have some hope of getting it right!