Constructing Ideas

Constructivist pix
Constructivist illustration with rooster’s head. By Leonid Zarubin/Shutterstock

3 July 2019 – Long time readers of my columns will know that one of my favorite philosophical questions is: “How do we know what we think we know?” Along the way, my thoughts have gravitated toward constructivism, which is a theory in the epistemology branch of philosophy.

Jean Piaget has been credited with initiating the constructivist theory of learning through his studies of childhood development. His methods were to ask probing questions of his children and others, in an attempt to understand how they viewed the world. He also devised and administered reading tests to schoolchildren and became interested in the types of errors they made, leading him to explore the reasoning process in these young children.

From his studies, he worked out a model of childhood development that mapped several stages of world-view paradigms they seemed to use as they matured. This forced him to postulate that children actively participate in constructing their own ideas – their knowledge base – based on experience and prior knowledge. Hence, the term “constructivism.”

Imagine a house that represents everything the child “knows.” Mentally, they live in that house all the time, view the world in relation to it, and make decisions based on what’s there.

As they experience everything, including the experience of having someone tell them something verbally or through written words, they actively remodel the place. The operant concept here is that they constantly do the remodeling themselves by trying to fit new information into the structure that’s already there.

My own journey toward constructivism was based on introspective phenomenological studies. That is, I paid attention to how I gained new knowledge and compared my experiences with experiences reported by others studying the same material.

A paradigm example is the study of quantum mechanics. This subject is difficult for students familiar with classical physics because the principles and the phenomena on which they are based seem counterintuitive. Especially, the range of time and distance scales on which quantum principles act is not directly accessible to humans. Quantum mechanics works at submicroscopic distances and on nanosecond time scales.

Successful students of quantum mechanics start by studying human-scale phenomena that betray the presence of quantum principles. For example, the old “planetary model” of atoms as miniature solar systems in which electrons revolve in stable orbits around the atomic nucleus like planets around the Sun is a physical impossibility. Students realize this after studying Maxwellian Electrodynamics.

In 1864, James Clerk Maxwell succeeded in summarizing everything physicists of the time knew about electricity and magnetism in four concise (though definitely not simple) equations. Taken together, they implied the feasibility of radio and not only how light traveled, but even predicted its precise speed. Maxwell’s Equations were enormously successful in guiding the development of electrical technology in the late nineteenth century.

The problem for physicists studying atomic-scale phenomena, however, was that Maxwell’s Equations implied that electrons whizzing around nuclei would rapidly convert all their energy of motion into light, which would radiate away. With no energy of motion left to keep electrons orbiting, the atoms would quickly collapse – then, no more atoms! The Universe as we know it would rapidly cease to exist.

When I say rapidly, I mean on the time scale of trillionths of a second!

Not good for the Universe! Luckily for the Universe, what this really means that there’s something wrong with classical-electrodynamic theory (i.e., Maxwell’s Equations).

The student finds out about dozens of such paradoxes that show that classical physics is just flat out wrong! The student is then ready to entertain some outlandish ideas that form the core of quantum theory. The student proceeds to piece these ideas together into their own mental version of quantum mechanics.

Every physics student I’ve discussed this with has had the same experience learning this quantum-electrodynamical theory (QED). Even more telling, they all report initially learning the ideas by rote without really understanding them, then applying them for considerable time (months or years) before piecing them together into a mental pattern that eventually feels intuitive. At that point, when presented with some phenomenon (such as the sky being blue) they immediately seize on a QED-based explanation as the most obvious. Even doubting QED has become absurd for them!

To a constructivist, this process for learning quantum mechanics makes perfect sense. The student is presented with numerous paradoxes, which causes cognitive dissonance. This state motivates the student to seek alternative concepts and fit them into his or her world view. In a sense, they construct an extension onto the framework of their world view. This will likely require them to make some modifications to the original structure to accommodate the new knowledge.

This method of developing new knowledge dovetails quite nicely with the scientific method that’s been under development since Aristotle and Plato started toying around with it in the fourth century BCE. The new development is that Piaget showed that it is the normal way humans develop new knowledge. Even children can’t fully comprehend a new idea until they fit it into a modified version of their knowledge base.

This model also explains why humans’ normal initial reaction to novel ideas is to forcefully reject them. Accepting new ideas requires them to do a lot of work on their mental scaffolding. It takes a powerful mental event causing severe cognitive dissonance to motivate them to remodel a mental construction they’ve been piecing together for years.

It also explains why younger humans are so much quicker to take up new ideas. Their mental frameworks are still small, and rebuilding them to fit in new concepts is relatively easy. The reward for building out their mental framework is great. They are also more used to tinkering with their mental models than older humans, who have mental frameworks that have served them well for decades without modification.

Of course, once they reach the point of intolerable cognitive dissonance, older humans have more experience to draw on to do the remodeling job. They will be even quicker than youngsters to make whatever adjustments are necessary.

Older humans who have a lifelong habit of challenging themselves with new ideas have the easiest time adapting to change. They are more used to realigning their thinking to incorporate new concepts and have more practice in constructing knowledge frameworks.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.